已知点A为平面直角坐标系内第四象限夹角平分线上一点,且OA=5,试在坐标轴上找一点C,使得△AOC为等腰三角形,并写出C点坐标。-八年级数学
题文
已知点A为平面直角坐标系内第四象限夹角平分线上一点,且OA=5,试在坐标轴上找一点C,使得△AOC为等腰三角形,并写出C点坐标。 |
答案
|
据专家权威分析,试题“已知点A为平面直角坐标系内第四象限夹角平分线上一点,且OA=5,试..”主要考查你对 等腰三角形的性质,等腰三角形的判定,用坐标表示位置 等考点的理解。关于这些考点的“档案”如下:
等腰三角形的性质,等腰三角形的判定用坐标表示位置
考点名称:等腰三角形的性质,等腰三角形的判定
- 定义:
有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
考点名称:用坐标表示位置
- 点的坐标的概念:
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当a≠b时,(a,b)和(b,a)是两个不同点的坐标。 - 各象限内点的坐标的特征 :
点P(x,y)在第一象限;点P(x,y)在第二象限
点P(x,y)在第三象限;点P(x,y)在第四象限
坐标轴上的点的特征:
点P(x,y)在x轴上y=0,x为任意实数
点P(x,y)在y轴上x=0,y为任意实数
点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)。
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x轴的距离等于|y|;
(2)点P(x,y)到y轴的距离等于|x|;
(3)点P(x,y)到原点的距离等于。 - 坐标表示位置步骤:
利用平面直角坐标系绘制区域内一些地点分布情况的平面图的过程如下:
(1)建立坐标系,选择一个适当的参照点为原点,确定X轴、y轴的正方向;
(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |