已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是[]A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形-九年级数学

题文

已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是

[     ]

A.等腰三角形
B.直角三角形
C.等腰三角形或直角三角形
D.等腰直角三角形
题型:单选题  难度:中档

答案

C

据专家权威分析,试题“已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△A..”主要考查你对  等腰三角形的性质,等腰三角形的判定,因式分解,直角三角形的性质及判定  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定因式分解直角三角形的性质及判定

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:因式分解

  • 定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作把这个多项式分解因式。
    它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。

  • 因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。
    注意四原则:
    1.分解要彻底(是否有公因式,是否可用公式)
    2.最后结果只有小括号
    3.最后结果中多项式首项系数为正(例如:)不一定首项一定为正。

  • 因式分解中的四个注意
    ①首项有负常提负,
    ②各项有“公”先提“公”,
    ③某项提出莫漏1,
    ④括号里面分到“底”。
    现举下例,可供参考。
    例:
    把-a2-b2+2ab+4分解因式。
    解:-a2-b2+2ab+4
    =-(a2-2ab+b2-4)
    =-[(a-b)2-4]
    =-(a-b+2)(a-b-2)
    这里的“负”,指“负号”。
    如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的;

    这里的“公”指“公因式”。
    如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

    这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。

    分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。
    其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。
    在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!
    由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。

  • 分解步骤:
    ①如果多项式的各项有公因式,那么先提公因式;
    ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
    ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解
    ④分解因式,必须进行到每一个多项式因式都不能再分解为止。
    也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”

    分解因式技巧掌握:
    ①分解因式是多项式的恒等变形,要求等式左边必须是多项式
    ②分解因式的结果必须是以乘积的形式表示
    ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数
    ④分解因式必须分解到每个多项式因式都不能再分解为止。
    注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

    主要方法:
    1.提取公因式法:
    如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
    提公因式法基本步骤:
    (1)找出公因式
    (2)提公因式并确定另一个因式:
    ①第一步找公因式可按照确定公因式的方法先确定系数再确定字母
    ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式
    ③提完公因式后,另一因式的项数与原多项式的项数相同。

    2.公式法:
    把乘法公式的平方差公式和完全平方公式反过来,得到因式分解的公式:
    平方差公式:a2-b2=(a+b)·(a-b);
    完全平方式:a2±2ab+b2=(a±b)2
    立方差公式:

    3.分组分解法:
    利用分组分解因式的方法叫做分组分解法,ac+ad+bc+bd=a·(c+d)+b·(c+d)=(a+b)·(c+d)
    其原则:
    ①连续提取公因式法:分组后每组能够分解因式,每组分解因式后,组与组之间又有公因式可提。
    ②分组后直接运用公式法:分组后各组内可以直接应用公式,各组分解因式后,使组与组之间构成公式的形式,然后用公式法分解因式。

    4.十字相乘法:a2+(p+q)·a+p·q=(a+p)·(a+q)。

    5.解方程法:
    通过解方程来进行因式分解,如
    x2+2x+1=0 ,解,得x1=-1,x2=-1,就得到原式=(x+1)×(x+1)

    6.待定系数法:
    首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
    例:
    分解因式x -x -5x -6x-4
    分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
    解:
    设x -x -5x -6x-4

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐