已知:线段m、n。(1)用尺规作出一个等腰三角形,使它的底等于m,腰等于n(保留作图痕迹,不写作法、不证明);(2)用至少4块所作三角形,拼成一个轴对称多边形(画出示意图即可)。-九年级数学

题文

已知:线段m、n。
(1)用尺规作出一个等腰三角形,使它的底等于m,腰等于n(保留作图痕迹,不写作法、不证明);
(2)用至少4块所作三角形,拼成一个轴对称多边形(画出示意图即可)。

题型:操作题  难度:中档

答案

解:(1)
(2)(答案不唯一)。

据专家权威分析,试题“已知:线段m、n。(1)用尺规作出一个等腰三角形,使它的底等于m,腰..”主要考查你对  等腰三角形的性质,等腰三角形的判定,轴对称,尺规作图  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定轴对称尺规作图

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:轴对称

  • 轴对称的定义:
    把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

  • 轴对称的性质:
    (1)对应点所连的线段被对称轴垂直平分;
    (2)对应线段相等,对应角相等;
    (3)关于某直线对称的两个图形是全等图形。

  • 轴对称的判定:
    如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
    这样就得到了以下性质:
    1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
    2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
    3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。 
    4.对称轴是到线段两端距离相等的点的集合。

    轴对称作用:
    可以通过对称轴的一边从而画出另一边。
    可以通过画对称轴得出的两个图形全等。
    扩展到轴对称的应用以及函数图像的意义。

    轴对称的应用:
    关于平面直角坐标系的X,Y对称意义
    如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
    相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

    关于二次函数图像的对称轴公式(也叫做轴对称公式 )
    设二次函数的解析式是 y=ax2+bx+c
    则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

    在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
    譬如,等腰三角形经常添设顶角平分线;
    矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
    正方形,菱形问题经常添设对角线等等。
    另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,
    或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

考点名称:尺规作图

  • 尺规作图:
    是指限定用没有刻度的直尺和圆规来完成的画图。
    一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。
    其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。
    运用尺规作图可以画出与某个角相等的角,十分方便。

  • 尺规作图的中基本作图:
    作一条线段等于已知线段;
    作一个角等于已知角;
    作线段的垂直平分线;
    作已知角的角平分线;
    过一点作已知直线的垂线。
    还有:
    已知一角、一边做等腰三角形
    已知两角、一边做三角形
    已知一角、两边做三角形
    依据公理:
    还可以根据已知条件作三角形,一般分为已知三边作三角形,已知两边及夹角作三角形,已知两角及夹边作三角形等,作图的依据是全等三角形的判定定理:SSS,SAS,ASA等。
    注意:
    保留全部的作图痕迹,包括基本作图的操作程序,只有保留作图痕迹,才能反映出作图的操作是否合理。

  • 尺规作图方法:
    任何尺规作图的步骤均可分解为以下五种方法:
    ·通过两个已知点可作一直线。
    ·已知圆心和半径可作一个圆。
    ·若两已知直线相交,可求其交点。
    ·若已知直线和一已知圆相交,可求其交点。
    ·若两已知圆相交,可求其交点。

  • 尺规作图简史:
    “规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.
    矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.
    《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.
    春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐