已知一个等腰三角形的周长为18cm。(1)如果腰长是底边的2倍,那么各边的长是多少?(2)如果一腰上的中线将该等腰三角形的周长分为1:2两部分,那么各边的长为多少?-七年级数学

题文

已知一个等腰三角形的周长为18cm。
(1)如果腰长是底边的2倍,那么各边的长是多少?
(2)如果一腰上的中线将该等腰三角形的周长分为1:2两部分,那么各边的长为多少?
题型:解答题  难度:中档

答案

解:(1)设底边BC=acm,则AC=AB=2acm,
则三角形的周长是18cm,
∴2a+2a+a=18,
∴a=,2a=
答:等腰三角形的三边长是cm,cm,cm。
(2)解:设BC=acm,AB=AC=2bcm,
∵中线BD将△ABC的周长分为1:2两部分,
18×=12,18×=6,
∴2b+b=6,b+a=12或2b+b=12,b+a=6,
解得:a=10,b=2或b=4,a=2,
①三角形三边长是10cm,4cm,4cm,
因为4+4<10,不符合三角形三边关系定理,
∴此种情况舍去,
②三角形的三边长是2cm,8cm,8cm,符合三角形的三边关系定理,综合上述:符合条件的三角形三边长是8cm,8cm,2cm,
答:等腰三角形的边长是8cm,8cm,2cm。

据专家权威分析,试题“已知一个等腰三角形的周长为18cm。(1)如果腰长是底边的2倍,那么..”主要考查你对  等腰三角形的性质,等腰三角形的判定  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐