如图,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.(1)点E、F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,请指出-九年级数学

题文

如图,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.  
(1)点E、F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,请指出    
△OEF为等腰三角形时动点E、F的位置.若不能,请说明理由.  
(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,写出x的取值范围.  
(3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图),试探究直线EF与的位置关系,并证明你的结论.
题型:解答题  难度:偏难

答案

解:(1)点E、F移动的过程中,AOEF能成为∠EOF=45°的等腰三角形. 
 此时点E,F的位置分别是: 
 ①E是BA的中点,F与A重合.
 ②BE=CF=  ③E与A重合,F是AC的中点.  
(2)在AOEB和△F OC中,  
∠EOB+∠FOC=135°,∠EOB+∠OEB=135°,  
∴∠FOC=∠OEB.
又∵∠B=∠C,  
∴△OEB∽△FOC

∵BE=x,CF=y,    OB=OC=
∴y=  
(3)EF与⊙O相切,
∴△OEB∽△FOC

 又∵∠B=∠EOF=45°,
∴△BEO∽△OEF.  
∴∠BEO+∠OEF ∴点O到AB和EF的距离相等.  
∵AB与⊙O相切,  
∴点O到EF的距离等于⊙O的半径,  
∴EF与⊙O相切.

据专家权威分析,试题“如图,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自..”主要考查你对  等腰三角形的性质,等腰三角形的判定,求反比例函数的解析式及反比例函数的应用,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离),相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定求反比例函数的解析式及反比例函数的应用直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)相似三角形的性质

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

考点名称:直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)

  • 直线与圆的位置关系:
    直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。
    (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d<r;
    (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐