如图是等腰三角形屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=8m,∠A=30°,求:(1)∠ABF的度数;(2)立柱BC,DE要多长.-八年级数学
题文
如图是等腰三角形屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=8m,∠A=30°,求: |
答案
解:(1)∠ABF=180°﹣2×30°=120°. 故∠ABF的度数为120°; (2)∵立柱BC、DE垂直于横梁AC, ∴BC∥DE, ∵D是AB中点, ∴AD=BD, ∴AE:CE=AD:BD, ∴AE=CE, ∴DE是△ABC的中位线, ∴DE=BC, 在Rt△ABC中, BC=AB=4m, ∴DE=2m. 故立柱BC长4m,DE长2m. |
据专家权威分析,试题“如图是等腰三角形屋架设计图的一部分,点D是斜梁AB的中点,立柱B..”主要考查你对 等腰三角形的性质,等腰三角形的判定,三角形中位线定理,平行线分线段成比例 等考点的理解。关于这些考点的“档案”如下:
等腰三角形的性质,等腰三角形的判定三角形中位线定理平行线分线段成比例
考点名称:等腰三角形的性质,等腰三角形的判定
- 定义:
有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
考点名称:三角形中位线定理
- 三角形中位线定义:
连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
三角形中位线定理:
三角形的中位线平行于第三边,并且等于它的一半。
如图已知△ABC中,D,E分别是AB,AC两边中点。
则DE平行于BC且等于BC/2 - 三角形中位线逆定理:
逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 - 区分三角形的中位线和中线:
三角形的中位线是连结三角形两边中点的线段;
三角形的中线是连结一个顶点和它的对边中点的线段。
考点名称:平行线分线段成比例
- 平行线分线段成比例定理:
三条平行线截两条直线,所得对应线段成比例。
推广:过一点的一线束被平行线截得的对应线段成比例。
定理推论:
①平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例。
②平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。 证明思路:
该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的知识,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它(用相似三角形可以证明它,在这里要用到平移和设三条平行线与直线1交于A、B、C三点,与直线2交于D、E、F三点
法1:过A作平行线的垂线交另两条平行线于M、N,过D作平行线的垂线交另两条平行线于P、Q,则四边形AMPD、ANQD均为矩形。
AM=DP,AN=DQ
AB=AM/cosA,AC=AN/cosA,∴AB/AC=AM/AN
DE=DP/cosD,DF=DQ/cosD,∴DE/DF=DP/DQ
又∵AM=DP,AN=DQ,∴AB/AC=DE/DF
根据比例的性质:
AB/(AC-AB)=DE/(DF-DE)
∴AB/BC=DE/EF
法2:过A点作AN∥DF交BE于M点,交CF于N点,则AM=DE,MN=EF.
∵ BE∥CF
∴△ABM∽△ACN.
∴AB/AC=AM/AN
∴AB/(AC-AB)=AM/(AN-AM)
∴AB/BC=DE/EF
法3:连结AE、BD、BF、CE
根据平行线的性质可得S△ABE=S△DBE, S△BCE=S△BEF
∴S△ABE/S△CBE=S△DBE/S△BFE
根据不同底等高三角形面积比等于底的比可得:
AB/BC=DE/EF
由更比性质、等比性质得:
AB/DE=BC/EF=(AB+BC)/(DE+EF)=AC/DF
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |