已知如图a:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于点E、F.(1)图中有几个等腰三角形?且EF与BE、CF间有怎样的关系?图a(2)若AB≠AC,其他条件不变,如-八年级数学
题文
已知如图a:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于点E、F. (1)图中有几个等腰三角形?且EF与BE、CF间有怎样的关系? |
图a |
(2)若AB≠AC,其他条件不变,如图b,图中还有等腰三角形吗?如果有,请分别指出它们.另第(1)问中EF与BE、CF间的关系还存在吗? |
图b |
(3)若△ABC中,∠B的平分线BO与三角形外角∠ACD的平分线CO交于点O,过点O作EF∥BC交AB于点E,交AC于点F.如图c,这时图中还有等腰三角形吗?EF与BE、CF间的关系如何?为什么? |
图c |
答案
解:(1)5个:△ABC,△AEF,△BEO,△OFC,△BOC; EF=2BE= 2CF(或EF=BE+CF).理由如下: ∵BO平分∠EBC, ∴∠EBO=∠CBO. 又∵EF∥BC, ∴∠OBC=∠EOB, ∴∠EBC=∠BOB,即BE=OE. 又∵AB=AC, ∴∠ABC=∠ACB. ∴∠EBO=∠OBC=∠EOB=∠FCO=∠OCB=∠FOC, ∴EF=2BE=2CF(或EF=BE+CF); (2)有,△BOE,△OCF; EF与BE,CF间的关系是:BF=BE+CF; (3)有,△BOE,△FCO; BE=EF+CF.理由如下: ∵EO∥BC, ∴∠EOB=∠OBC. ∵BO平分∠EBC, ∴∠EBO=∠OBC, ∴∠EBO=∠EOB. ∴BE=OE, ∴△BEO是等腰三角形, 又∵EO∥BC, ∴∠EOC=∠OCD. ∴CO平分∠ACD, ∴∠ACO=∠OCD, ∴∠FCO=∠FOC, ∴FC=OF, 故△CFO是等腰三角形. 而EO=BE,且EF+FO=EO, ∴BE=EF+CF. |
据专家权威分析,试题“已知如图a:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥..”主要考查你对 等腰三角形的性质,等腰三角形的判定,角平分线的定义 ,平行线的性质,平行线的公理 等考点的理解。关于这些考点的“档案”如下:
等腰三角形的性质,等腰三角形的判定角平分线的定义 平行线的性质,平行线的公理
考点名称:等腰三角形的性质,等腰三角形的判定
- 定义:
有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
考点名称:角平分线的定义
- 角的平分线的定义:
一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。 角平分线的性质:
角平分线上的点,到角两边的距离相等
定理:
角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:
到角两边的距离相等的点在角平分线上。
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。- 平行线的性质公理注意:
①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
②平行公理体现了平行线的存在性和唯一性;
③平行公理的推论体现了平行线的传递性。
④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |