如图,在△ABC中,∠C=90°,∠A=30°,BD是角平分线,DE⊥AB于E。(1)请你在图中找出两对相等的线段(填在下列横线上),并说明它们为什么相等;(2)若DE=1.5cm,求AC的长.(1)①_____-七年级数学

题文

如图,在△ABC中,∠C=90°,∠A=30°,BD是角平分线,DE⊥AB于E。
(1)请你在图中找出两对相等的线段(填在下列横线上),并说明它们为什么相等;
(2)若DE=1.5cm,求AC的长.
(1)① _________ =_________;②_________=_________。

题型:解答题  难度:中档

答案

(1)①解:AD=BD,DE=DC,
理由是:在△ABC中,∠C=90°,∠A=30°,则∠B=60°
∵BD是角平分线,
∴∠ABD=∠B=30°,
∴∠A=∠ABD,
∴AD=BD
故答案为:AD,BD;
②解:∵BD是角平分线,DC⊥BC,DE⊥AB,
∴DE=DC,
故答案为:DE.DC;
(2)解:由②知DC=DE=1.5,
在Rt△AED中,
∵∠A=30°,
∴AD=2DE=3
∴AC=AD+DC=3+1.5=4.5(cm),
答:AC的长是4.5c。

据专家权威分析,试题“如图,在△ABC中,∠C=90°,∠A=30°,BD是角平分线,DE⊥AB于E。(1)请..”主要考查你对  等腰三角形的性质,等腰三角形的判定,角平分线的性质  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定角平分线的性质

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:角平分线的性质

  • 角平分线:
    三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。

  • 角平方线定理:
    ①角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。
    ②角平分线能得到相同的两个角,都等于该角的一半。
    ③三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    ④三角形的三个角的角平分线相交于一点,这个点称为内心 ,即以此点为圆心可以在三角形内部画一个内切圆。
    逆定理:
    在角的内部,到角两边的距离相等的点在角平分线上。

  • 角平分线作法:
    在角AOB中,画角平分线

    方法一:
    1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,N。
    2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
    3.作射线OP。
    则射线OP为角AOB的角平分线。
    当然,角平分线的作法有很多种。下面再提供一种尺规作图的方法供参考。

    方法二:
    1.在两边OA、OB上分别截取OM、OA和ON、OB,且使得OM=ON,OA=OB;
    2.连接AN与BM,他们相交于点P;
    3.作射线OP。
    则射线OP为角AOB的角平分线。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐