如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是()A.△ABC是等腰三角形B.四边形EFAM是菱形C.S△BEF=12S△ACDD.DE平分∠CDF-数学
题文
如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
|
题文
如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
|
题型:单选题 难度:中档
答案
连接AE,如右图所示, ∵E为BC的中点, ∴BE=CE=
∴AD=BE=EC,又AD∥BC, ∴四边形ABED为平行四边形,四边形AECD为平行四边形, 又∵∠DCB=90°, ∴四边形AECD为矩形, ∴∠AEC=90°,即AE⊥BC, ∴AE垂直平分BC, ∴AB=AC,即△ABC为等腰三角形, 故选项A不合题意; ∵E为BC的中点,F为AB的中点, ∴EF为△ABC的中位线, ∴EF∥AC,EF=
又∵四边形ABED为平行四边形, ∴AF∥ME, ∴四边形AFEM为平行四边形, 又∵AF=
∴四边形AFEM为菱形, 故选项B不合题意; 过F作FN⊥BC于N点,可得FN∥AE, 又∵F为AB的中点, ∴N为BE的中点, ∴FN为△ABE的中位线, ∴FN=
又∵AE=DC,BE=AD, ∴S△BEF=
故选项C不合题意; DE不一定平分∠CDF, 故选项D符合题意. 故选D. |
据专家权威分析,试题“如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、B..”主要考查你对 等腰三角形的性质,等腰三角形的判定,三角形中位线定理,矩形,矩形的性质,矩形的判定,梯形,梯形的中位线 等考点的理解。关于这些考点的“档案”如下:
等腰三角形的性质,等腰三角形的判定三角形中位线定理矩形,矩形的性质,矩形的判定梯形,梯形的中位线
考点名称:等腰三角形的性质,等腰三角形的判定
等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)
等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
考点名称:三角形中位线定理
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |