在△ABC中,AB=AC,∠A=36°,以点A为位似中心,把△ABC放大2倍后得△AB′C′,则∠B′=______度.-数学
题文
在△ABC中,AB=AC,∠A=36°,以点A为位似中心,把△ABC放大2倍后得△AB′C′,则∠B′=______度. |
题文
在△ABC中,AB=AC,∠A=36°,以点A为位似中心,把△ABC放大2倍后得△AB′C′,则∠B′=______度. |
题型:填空题 难度:中档
答案
∵AB=AC,∠A=36°, ∴∠B=∠C=72° ∵△ABC∽△AB′C′ ∴∠B′=∠B=72°. |
据专家权威分析,试题“在△ABC中,AB=AC,∠A=36°,以点A为位似中心,把△ABC放大2倍后得△..”主要考查你对 等腰三角形的性质,等腰三角形的判定,位似 等考点的理解。关于这些考点的“档案”如下:
等腰三角形的性质,等腰三角形的判定位似
考点名称:等腰三角形的性质,等腰三角形的判定
等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)
等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
考点名称:位似
位似图形的性质:
位似图形的任意一对对应点与位似中心在同一直线上,它们到位似中心的距离之比等于相似比。
1.位似图形对应线段的比等于相似比。
2.位似图形的对应角都相等。
3.位似图形对应点连线的交点是位似中心。
4.位似图形面积的比等于相似比的平方。
5.位似图形高、周长的比都等于相似比。
6.位似图形对应边互相平行或在同一直线上。
位似图形作用:
利用位似可以将一个图形任意放大或缩小。
位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。
根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。
作图步骤:(位似比,即位似图形的相似比,指的是要求画的新图形与参照的原图形的相似比)
①首先确定位似中心,位似中心的位置可随意选择;
②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;
③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;
④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形,最好做两个。
位似变换:
把一个几何图形变换成与之位似的图形,叫做位似变换。
物理中的透镜成像就是一种位似变换,位似中心为光心。
位似变换应用极为广泛,特别是可以证明三点共线等问题。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |