如图,在梯形ABCD中,AD∥BC,AB=AD=DC,AC⊥AB,延长CB至F,使BF=CD.(1)求∠ABC的度数;(2)求证:△CAF为等腰三角形.-数学

题文

如图,在梯形ABCD中,AD∥BC,AB=AD=DC,AC⊥AB,延长CB至F,使BF=CD.
(1)求∠ABC的度数;
(2)求证:△CAF为等腰三角形.

题型:解答题  难度:中档

答案

(1)∵AD∥BC,
∴∠DAC=∠ACB.
∵AD=DC,
∴∠DCA=∠DAC.
∴∠DCA=∠ACB=
1
2
∠DCB.
∵DC=AB,
∴∠DCB=∠ABC.
∴∠ACB=
1
2
∠ABC.
在△ACB中,∵AC⊥AB,
∴∠CAB=90°.
∴∠ACB+∠ABC=90°.
1
2
∠ABC+∠ABC=90°.
∴∠ABC=60°.(3分)



(2)证明:连接DB,
∵在梯形ABCD中,AB=DC,
∴AC=DB.
在四边形DBFA中,DA∥BF,DA=DC=BF,
∴四边形DBFA是平行四边形.
∴DB=AF,
∴AC=AF.
即△ACF为等腰三角形.(6分)

据专家权威分析,试题“如图,在梯形ABCD中,AD∥BC,AB=AD=DC,AC⊥AB,延长CB至F,使BF=..”主要考查你对  等腰三角形的性质,等腰三角形的判定,平行四边形的性质,梯形,梯形的中位线  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定平行四边形的性质梯形,梯形的中位线

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:平行四边形的性质

  • 平行四边形的概念:
    两组对边分别平行的四边形叫做平行四边形。
    平行四边形用符号“□ABCD,如平行四边形ABCD记作“□ABCD”,读作ABCD”。
    ①平行四边形属于平面图形。
    ②平行四边形属于四边形。
    ③平行四边形中还包括特殊的平行四边形:矩形,正方形和菱形等。
    ④平行四边形属于中心对称图形。

  • 平行四边形的性质:
    主要性质
    (矩形、菱形、正方形都是特殊的平行四边形。)
    (1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
    (简述为“平行四边形的两组对边分别相等”)
    (2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
    (简述为“平行四边形的两组对角分别相等”)
    (3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
    (简述为“平行四边形的邻角互补”)
    (4)夹在两条平行线间的平行线段相等。
    (5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
    (简述为“平行四边形的对角线互相平分”)
    (6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
    (7)平行四边形的面积等于底和高的积。(可视为矩形)
    (8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
    (9)平行四边形是中心对称图形,对称中心是两对角线的交点.
    (10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。
    注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

    (11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
    (12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
    (13)平行四边形对角线把平行四边形面积分成四等分。
    (14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
    (15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。

考点名称:梯形,梯形的中位线

  • 梯形的定义:
    一组对边平行,另一组对边不平行的四边形叫做梯形。
    梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底,梯形中不平行的两边叫做梯形的腰,梯形的两底的距离叫做梯形的高。
    梯形的中位线:
    连结梯形两腰的中点的线段。 

  • 梯形性质:
    ①梯形的上下两底平行;
    ②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
    ③等腰梯形对角线相等。

    梯形判定:
    1.一组对边平行,另一组对边不平行的四边形是梯形。
    2.一组对边平行且不相等的四边形是梯形。

    梯形中位线定理:
    梯形中位线平行于两底,并且等于两底和的一半。
    梯形中位线×高=(上底+下底)×高=梯形面积

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐