如图,在△ABC中,AB=AC,DE=EC,DH∥BC,EF∥AB,HE的延长线与BC的延长线相交于点M,点G在BC上,且∠1=∠2,不添加辅助线,解答下列问题:(1)找出一个等腰三角形;(不包括△ABC)(2-数学-00教育-零零教育信息网
题文
如图,在△ABC中,AB=AC,DE=EC,DH∥BC,EF∥AB,HE的延长线与BC的延长线相交于
点M,点G在BC上,且∠1=∠2,不添加辅助线,解答下列问题: (1)找出一个等腰三角形;(不包括△ABC) (2)找出三对相似三角形;(不包括全等三角形) (3)找出两对全等三角形,并选出一对进行证明. |
题型:解答题 难度:中档
答案
(1)∵AB=AC, ∴∠B=∠ACB, ∵DH∥BC, ∴∠AHD=∠B,∠ADH=∠ACB, ∴∠AHD=∠ADH, ∴△AHD是等腰三角形; ∵DH∥BC, ∴∠2=∠M又∠1=∠2, ∴∠1=∠M, ∴△EGM是等腰三角形; ∵AB=AC, ∴∠B=ACB, ∵EF∥AB,∠B=∠EFC, ∴∠ACB=∠EFC ∴△EFC是等腰三角形;
(2)△AHD∽△ABC,△EFC∽△ABC,△EFM∽△HBM,△AHD∽△EFC,△BMH∽△CGE(写出其中三对即可).(3分) ∵HD∥BC, ∴△AHD∽△ABC, ∵EF∥AB, ∴△EFC∽△ABC,△EFM∽△HBM;
(3)△DHE≌△FGE,△DHE≌△CME,△FGE≌△CME,△EGC≌△EMF(写出其中两对即可)(2分) 选择△DHE≌△CME. 证明:∵DH∥CM, ∴∠2=∠M, 又∵∠DEH=∠CEM,DE=EC, ∴△DHE≌△CME(2分) ∵HD∥BC,EF∥AB, ∴∠2=∠M,∠B=EFC又∠B=∠ACB,∠1=∠2, ∴∠1=∠M,∠EFC=∠ECF, ∴∠EFG=∠ECM, ∴△EFG≌△ECM. 说明:选任何一对全等三角形,只要证明正确均得分. |
据专家权威分析,试题“如图,在△ABC中,AB=AC,DE=EC,DH∥BC,EF∥AB,HE的延长线与BC的..”主要考查你对 等腰三角形的性质,等腰三角形的判定,三角形全等的判定,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
等腰三角形的性质,等腰三角形的判定三角形全等的判定相似三角形的性质
考点名称:等腰三角形的性质,等腰三角形的判定
考点名称:三角形全等的判定
考点名称:相似三角形的性质