已知△ABC中,AB=AC,点M为BC的中点,MG⊥BA于G,MD⊥AC于D,GF⊥AC于点F,DE⊥AB于点E,GF与DF相交于点F.试说明四边形HGMD是菱形.-数学
题文
已知△ABC中,AB=AC,点M为BC的中点,MG⊥BA于G,MD⊥AC于D,GF⊥AC于点F,DE⊥AB于点E,GF与DF相交于点F.试说明四边形HGMD是菱形. |
题文
已知△ABC中,AB=AC,点M为BC的中点,MG⊥BA于G,MD⊥AC于D,GF⊥AC于点F,DE⊥AB于点E,GF与DF相交于点F.试说明四边形HGMD是菱形. |
题型:解答题 难度:中档
答案
证明:连接AM, ∵AB=AC,M为BC中点, ∴AM平分∠BAC, ∵MG⊥BA,MD⊥AC, ∴MG=MD, ∵MG⊥BA,DE⊥AB, ∴MG∥DE, 同理MD∥GF, ∴四边形HGMD是平行四边形, ∵MD=MG, ∴平行四边形HGMD是菱形. |
据专家权威分析,试题“已知△ABC中,AB=AC,点M为BC的中点,MG⊥BA于G,MD⊥AC于D,GF⊥AC于..”主要考查你对 等腰三角形的性质,等腰三角形的判定,平行四边形的判定,菱形,菱形的性质,菱形的判定 等考点的理解。关于这些考点的“档案”如下:
等腰三角形的性质,等腰三角形的判定平行四边形的判定菱形,菱形的性质,菱形的判定
考点名称:等腰三角形的性质,等腰三角形的判定
等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)
等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
考点名称:平行四边形的判定
考点名称:菱形,菱形的性质,菱形的判定
菱形的性质:
①菱形具有平行四边形的一切性质;
②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
③菱形的四条边都相等;
④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);
⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。
菱形的判定:
在同一平面内,
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |