下列说法中正确的是()A.有两边和其中一边的对角对应相等的两个三角形全等B.等腰三角形是轴对称图形,也是中心对称图形C.对角线互相平分的四边形是平行四边形D.有两边平行的四-数学

题文

下列说法中正确的是(  )
A.有两边和其中一边的对角对应相等的两个三角形全等
B.等腰三角形是轴对称图形,也是中心对称图形
C.对角线互相平分的四边形是平行四边形
D.有两边平行的四边形是梯形
题型:单选题  难度:中档

答案

A、符合SSA的两个三角形不一定全等;故本选项错误.
B、等腰三角形是轴对称图形,不是中心对称图形;故本选项错误.
C、对角线互相平分的四边形是平行四边形;故本选项正确.
D、有一组对边平行另一组对边不平行的四边形是梯形.故本选项错误.
故选C.

据专家权威分析,试题“下列说法中正确的是()A.有两边和其中一边的对角对应相等的两个三..”主要考查你对  等腰三角形的性质,等腰三角形的判定,三角形全等的判定,平行四边形的判定,梯形,梯形的中位线  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定三角形全等的判定平行四边形的判定梯形,梯形的中位线

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:三角形全等的判定

  • 三角形全等判定定理:
    1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了
    三角形具有稳定性的原因。
    2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
    3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
    4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
    5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以:SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
    注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

  • 三角形全等的判定公理及推论:
    (1)“边角边”简称“SAS”
    (2)“角边角”简称“ASA”
    (3)“边边边”简称“SSS”
    (4)“角角边”简称“AAS”
    注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

    要验证全等三角形,不需验证所有边及所有角也对应地相同。
    以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:
    ①S.S.S. (边、边、边):
    各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
    ②S.A.S. (边、角、边):
    各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
    ③A.S.A. (角、边、角):
    各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
    ④A.A.S. (角、角、边):
    各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。
    ⑤R.H.S. / H.L. (直角、斜边、边):
    各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。 但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:
    ⑥A.A.A. (角、角、角):
    各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。
    ⑦A.S.S. (角、边、边):
    各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。
    但若是直角三角形的话,应以R.H.S.来判定。

  • 解题技巧:
    一般来说考试中线段和角相等需要证明全等。
    因此我们可以来采取逆思维的方式。
    来想要证全等,则需要什么条件:要证某某边等于某某边,那么首先要证明含有那两个边的三角形全等。
    然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。
    有时还需要画辅助线帮助解题。常用的辅助线有:倍长中线,截长补短等。
    分析完毕以后要注意书写格式,在全等三角形中,如果格式不写好那么就容易出现看漏的现象。

考点名称:平行四边形的判定

  • 平行四边形的判定:
    (1)定义:两组对边分别平行的四边形是平行四边形;
    (2)定理1:两组对角分别相等的四边形是平行四边形;
    (3)定理2:两组对边分别相等的四边形是平行四边形;
    (4)定理3:对角线互相平分的四边形是平行四边形
    (5)定理4:一组对边平行且相等的四边形是平行四边形。
    平行四边形的面积:S=底×高。

考点名称:梯形,梯形的中位线

  • 梯形的定义:
    一组对边平行,另一组对边不平行的四边形叫做梯形。
    梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底,梯形中不平行的两边叫做梯形的腰,梯形的两底的距离叫做梯形的高。
    梯形的中位线:
    连结梯形两腰的中点的线段。 

  • 梯形性质:
    ①梯形的上下两底平行;
    ②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
    ③等腰梯形对角线相等。

    梯形判定:
    1.一组对边平行,另一组对边不平行的四边形是梯形。
    2.一组对边平行且不相等的四边形是梯形。

    梯形中位线定理:
    梯形中位线平行于两底,并且等于两底和的一半。
    梯形中位线×高=(上底+下底)×高=梯形面积
    梯形中位线到上下底的距离相等
    中位线长度=(上底+下底)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐