在直角坐标系中,已知点B(-3,3),点A(1,1),在x轴和y轴上确定点P,使△ABP为等腰三角形,则符合条件的点P的个数共有()A.7个B.8个C.9个D.10个-数学

题文

在直角坐标系中,已知点B(-3,3),点A(1,1),在x轴和y轴上确定点P,使△ABP为等腰三角形,则符合条件的点P的个数共有(  )
A.7个B.8个C.9个D.10个
题型:单选题  难度:偏易

答案

分为三种情况:①以B为圆心,以BA为半径作弧交x轴和y轴分别有两点,此时BP=BA;
②以A为圆心,以BA为半径作弧交x轴和y轴分别有两点,此时AP=BA;
③作AB的垂直平分线分别交x轴和y轴分别有一点,此时AP=BP;
即共有(2+2)+(2+2)+2=10,
故选D.

据专家权威分析,试题“在直角坐标系中,已知点B(-3,3),点A(1,1),在x轴和y轴上确定点..”主要考查你对  等腰三角形的性质,等腰三角形的判定,用坐标表示位置  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定用坐标表示位置

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:用坐标表示位置

  • 点的坐标的概念:
    点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
    平面内点的坐标是有序实数对,当a≠b时,(a,b)和(b,a)是两个不同点的坐标。

  • 各象限内点的坐标的特征 :
    点P(x,y)在第一象限;点P(x,y)在第二象限
    点P(x,y)在第三象限;点P(x,y)在第四象限

    坐标轴上的点的特征:
    点P(x,y)在x轴上y=0,x为任意实数
    点P(x,y)在y轴上x=0,y为任意实数
    点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)。

    点P(x,y)到坐标轴及原点的距离:
    (1)点P(x,y)到x轴的距离等于|y|;
    (2)点P(x,y)到y轴的距离等于|x|;
    (3)点P(x,y)到原点的距离等于

  • 坐标表示位置步骤:
    利用平面直角坐标系绘制区域内一些地点分布情况的平面图的过程如下:
    (1)建立坐标系,选择一个适当的参照点为原点,确定X轴、y轴的正方向;
    (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
    (3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐