已知△ABC中,∠A=α,点D、E、F分别在BC、AB、AC上.(1)如图1,若BE=BD,CD=CF,则∠EDF=______;(2)如图2,若BD=DE,DC=DF,则∠EDF=______;(3)如图3,若BD=CF,CD=BE,AB=AC,-数学

题文

已知△ABC中,∠A=α,点D、E、F分别在BC、AB、AC上.
(1)如图1,若BE=BD,CD=CF,则∠EDF=______;
(2)如图2,若BD=DE,DC=DF,则∠EDF=______;
(3)如图3,若BD=CF,CD=BE,AB=AC,则∠EDF=______;
(2)如图4,若DE⊥AB,DF⊥BC,AB=AC,则∠EDF=______.
题型:解答题  难度:中档

答案

(1)∵∠A=α,
∴∠B+∠C=180°-α,
∵BE=BD,CD=CF,
∴∠BED=∠BDE,∠CFD=∠CDF,
∴∠BDE+∠CDF=
1
2
(180°-∠B)+
1
2
(180°-∠C)=180°-
1
2
(∠B+∠C)=90°+
1
2
α,
∴∠EDF=180°-(∠BDE+∠CDF)=90°-
1
2
α;

(2)∵∠A=α,
∴∠B+∠C=180°-α,
∵BD=DE,DC=DF,
∴∠BED=∠B,∠CFD=∠C,
∴∠BDE=180°-2∠B,∠CDF=180°-2∠C,
∴∠BDE=180°-(∠BED+∠CDF)=2(∠B+∠C)-180°=180°-2α;

(3)∵AB=AC,∠A=α,
∴∠B=∠C=90°-
1
2
α,
在△BDE和△CFD中,

BD=CF
∠B=∠C
BE=CD

∴△BDE≌△CFD(SAS),
∴∠BED=∠CDF,
∵∠B+∠BDE+∠BED=180°,∠BDE+∠CDF+∠EDF=180°,
∴∠EDF=∠B=90°-
1
2
α;

(4)∵AB=AC,∠A=α,
∴∠B=∠C=90°-
1
2
α,
∵DE⊥AB,DF⊥BC,
∴∠BDE+∠EDF=90°,∠B+∠BDE=90°,
∴∠EDF=∠B=90°-
1
2
α.
故答案为:(1)90°-
1
2
α,(2)180°-2α,(3)90°-
1
2
α,(4)90°-
1
2
α.

据专家权威分析,试题“已知△ABC中,∠A=α,点D、E、F分别在BC、AB、AC上.(1)如图1,若BE..”主要考查你对  等腰三角形的性质,等腰三角形的判定  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐