画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上.(1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作线段CD的垂直平分线EF,分别与CD、OP相交于E、F;连接OE、CF、-数学
题文
画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上. (1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作线段CD的垂直平分线EF,分别与CD、OP相交于E、F;连接OE、CF、DF. (2)在所画图中, ①线段OE与CD之间有怎样的数量关系:______. ②求证:△CDF为等腰直角三角形. |
答案
(1)根据题意要求:画∠AOB的平分线OP,作线段CD的垂直平分线EF; (2)①OE=
②方法一:∵EF是线段CD的垂直平分线, ∴FC=FD,(5) ∵△COD为直角三角形,E为CD的中点, ∴OE=CE=
∴∠COE=∠ECO. 设CD与OP相交于点G, ∵∠EOF=45°-∠COE, ∠EFO=90°-∠EGF=90°-(45°+∠ECO)=45°-∠ECO, ∴∠EOF=∠EFO,EF=OE.(6分) 又CE=OE=EF,∠CEF=90°, ∴∠CFE=45°,同理∠DFE=45°; ∴∠CFD=90°,△CDF为等腰直角三角形.(7分) 方法二:过点F作FM⊥OA、FN⊥OB,垂足分别为M、N.(5分) ∵OP是∠AOB的平分线, ∴FM=FN. 又EF是CD的垂直平分线, ∴FC=FD. ∴Rt△CFM≌Rt△DFN(HL),∠CFM=∠DFN.(6分) 在四边形MFNO中,由∠AOB=∠FMO=∠FNO=90°,得∠MFN=90°, ∴∠CFD=∠CFM+∠MFD=∠DFN+∠MFD=∠MFN=90°, ∴△CDF为等腰直角三角形.(7分) |
据专家权威分析,试题“画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上.(1)尺规作图(..”主要考查你对 等腰三角形的性质,等腰三角形的判定 等考点的理解。关于这些考点的“档案”如下:
等腰三角形的性质,等腰三角形的判定
考点名称:等腰三角形的性质,等腰三角形的判定
- 定义:
有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |