如图,AB=AC=AD,BD平分∠ABC交AC于E,∠BAC=36°.(1)直接写出图中的所有等腰三角形;(2)若AB=m,BC=n,求CE与BD的长.(用含有m,n的代数式表示)-数学

题文

如图,AB=AC=AD,BD平分∠ABC交AC于E,∠BAC=36°.
(1)直接写出图中的所有等腰三角形;
(2)若AB=m,BC=n,求CE与BD的长.(用含有m,n的代数式表示)
题型:解答题  难度:中档

答案

(1)等腰三角形有△ABC,△ABD,△ADE,△BEC;
(2)∵∠BAC=36°,AB=AC,
∴∠C=∠ABC=
1
2
(180°-∠BAC)=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBE=
1
2
∠ABC=36°,
∴∠AED=∠BEC=180°-∠C-∠DBC=72°,
∵AB=AD,
∴∠D=∠ABD=36°,
∴∠DAE=180°-36°-72°=72°=∠AED,
∴AD=DE=m,
∵BE=BC=n,AB=AD=m,
∴BD=BE+DE=n+m;
∵∠C=∠C,∠CBE=∠BAC=36°,
∴△CBE∽△CAB,
CE
BC
=
BC
AB

CE
n
=
n
m

CE=
n2
m

即BD=n+m,CE=
n2
m

据专家权威分析,试题“如图,AB=AC=AD,BD平分∠ABC交AC于E,∠BAC=36°.(1)直接写出图中的..”主要考查你对  等腰三角形的性质,等腰三角形的判定  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐