在△ABC中,∠ACB=90°,D是AB的中点,过点B作∠CBE=∠A,BE与射线CA相交于点E,与射线CD相交于点F.(1)如图,当点E在线段CA上时,求证:BE⊥CD;(2)如果BE=CD,那么线段AC与BC之间具-数学

题文

在△ABC中,∠ACB=90°,D是AB的中点,过点B作∠CBE=∠A,BE与射线CA相交于点E,与射线CD相交于点F.
(1)如图,当点E在线段CA上时,求证:BE⊥CD;
(2)如果BE=CD,那么线段AC与BC之间具有怎样的数量关系?并证明你所得到的结论;
(3)如果△BDF是等腰三角形,求∠A的度数.
题型:解答题  难度:中档

答案

(1)∵∠CBE=∠A,
∴∠CBE+∠EBA=∠A+∠EBA,即:∠CBA=∠BEC,
∵∠ACB=90°,D是AB的中点,
∴CD=BD,
∴∠CBA=∠DCB,
∴∠DCB=∠BEC,
∵∠DCB+∠ACD=90°,
∴∠BEC+∠ACD=90°,
∴BE⊥CD;

(2)线段AC与BC之间的数量关系是
BC
AC
=
1
2
(AC=2BC),
∵∠CBE=∠A,∠BCE=∠ACB,
∴△BCE∽△ACB,
BC
AC
=
BE
AB

∵BE=CD,
CD
AB
=
1
2

BC
AC
=
1
2


(3)∵△BDF是等腰三角形,∠BFD=90°,
∴∠BDF=45°.
①当点E在线段CA上时,∠A=
1
2
∠BDF=22.5°;(2分)
②当点E在线段CA延长线上时,∠BAC=
180°-∠CDA
2
=
135°
2
=67.5°.(2分)

据专家权威分析,试题“在△ABC中,∠ACB=90°,D是AB的中点,过点B作∠CBE=∠A,BE与射线CA相..”主要考查你对  等腰三角形的性质,等腰三角形的判定  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐