已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,-数学
题文
已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F. ①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系. ②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗? ③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么? |
答案
(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF.理由如下: ∵EF∥BC, ∴∠EOB=∠OBC,∠FOC=∠OCB, 又∠B、∠C的平分线交于O点, ∴∠EBO=∠OBC,∠FCO=∠OCB, ∴∠EOB=∠OBE,∠FCO=∠FOC, ∴OE=BE,OF=CF, ∴EF=OE+OF=BE+CF. 又AB=AC, ∴∠ABC=∠ACB, ∴∠EOB=∠OBE=∠FCO=∠FOC, ∴EF=BE+CF=2BE=2CF; (2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF; 第一问中的EF与BE,CF的关系是:EF=BE+CF. (3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE-CF,理由如下: ∵EO∥BC, ∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上的一点) 又∵OB,OC分别是∠ABC与∠ACG的角平分线 ∴∠EBO=∠OBC,∠ACO=∠OCG, ∴∠EOB=∠EBO, ∴BE=OE, ∠FCO=∠FOC, ∴CF=FO, 又∵EO=EF+FO, ∴EF=BE-CF. |
据专家权威分析,试题“已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥..”主要考查你对 等腰三角形的性质,等腰三角形的判定 等考点的理解。关于这些考点的“档案”如下:
等腰三角形的性质,等腰三角形的判定
考点名称:等腰三角形的性质,等腰三角形的判定
- 定义:
有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |