如图,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形内,要使扇形ODE绕点O无论怎样转动,△ABC与扇形重叠部分的面积总等于△ABC的面积的,扇形的圆心角应为多少度?说明你-九年级数学
题文
如图,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形内,要使扇形ODE绕点O无论怎样转动,△ABC与扇形重叠部分的面积总等于△ABC的面积的,扇形的圆心角应为多少度?说明你的理由。 |
答案
解:当扇形的圆心角为120°时,△ABC与扇形重合部分的面积为△ABC面积的,无论绕点O怎样旋转,重合部分都等于△OAB的面积。 连接OB、OC ∴S△OBC=S△ABC ∵∠BOC=120°,∠OBC=∠OCB=30° 当∠DOE=120°时 扇形ODE的两条半径OD、OE分别与OB、OC重合时,重合部分的面积为S△OBC 当OD、OE不与OB、OC重合时,设OD交AB于点G,OE交BC于点H 则∠BOG=∠COH,OB=OC,∠OBG=∠OCH=30° ∴△OBG≌△OCH ∴S△OBG+S△OBH=S△OCH+S△OBH 即S四边形OGBH=S△OBC=S△ABC。 |
据专家权威分析,试题“如图,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形内,要..”主要考查你对 等边三角形,全等三角形的性质,扇形面积的计算 等考点的理解。关于这些考点的“档案”如下:
等边三角形全等三角形的性质扇形面积的计算
考点名称:等边三角形
- 等边三角形定义:
三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
1.三边长度相等;
2.三个内角度数均为60度;
3.一个内角为60度的等腰三角形。 性质:
①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)判定方法:
①三边相等的三角形是等边三角形(定义)
②三个内角都相等(为60度)的三角形是等边三角形
③有一个角是60度的等腰三角形是等边三角形
④ 两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。
等边三角形的性质与判定理解:
首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。等比三角形的尺规做法:
可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
考点名称:全等三角形的性质
- 全等三角形:
两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。全等三角形是几何中全等的一种。根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。
全等三角形的对应边相等,对应角相等。
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
③有公共边的,公共边一定是对应边;
④有公共角的,角一定是对应角;
⑤有对顶角的,对顶角一定是对应角。 全等三角形的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
8.全等三角形的对应角的三角函数值相等。
考点名称:扇形面积的计算
- 扇形:
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。
显然,它是由圆周的一部分与它所对应的圆心角围成。
扇形面积公式:
(其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。)
设半径R,
1.已知圆心角弧度α(或者角度n)
面积S=α/(2π)·πR2=αR2/2
S=(n/360)·πR2
2.已知弧长L:
面积S=LR/2
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |