如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD,(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M(不写作法,保留作图痕迹);(2)求证:BM=EM。-八年级数学

首页 > 考试 > 数学 > 初中数学 > 等边三角形/2020-05-20 / 加入收藏 / 阅读 [打印]

题文

如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD,
(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M(不写作法,保留作图痕迹);
(2)求证:BM=EM。

题型:证明题  难度:中档

答案

解:(1)作图如下;

(2)∵△ABC是等边三角形,D是AC的中点
∴BD平分∠ABC(三线合一)
∴∠ABC=2∠DBE
∵CE=CD
∴∠CED=∠CDE
又∵∠ACB=∠CED+∠CDE
∴∠ACB=2∠E
又∵∠ABC=∠ACB
∴2∠DBC=2∠E
∴∠DBC=∠E
∴BD=DE
又∵DM⊥BE
∴BM=EM。

据专家权威分析,试题“如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=C..”主要考查你对  等边三角形,垂直的判定与性质  等考点的理解。关于这些考点的“档案”如下:

等边三角形垂直的判定与性质

考点名称:等边三角形

  • 等边三角形定义:
    三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
    如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
    1.三边长度相等;
    2.三个内角度数均为60度;
    3.一个内角为60度的等腰三角形。

  • 性质:
    ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
    ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
    ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
    ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
    ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

  • 判定方法:
    ①三边相等的三角形是等边三角形(定义)
    ②三个内角都相等(为60度)的三角形是等边三角形
    ③有一个角是60度的等腰三角形是等边三角形
    ④ 两个内角为60度的三角形是等边三角形
    说明:可首先考虑判断三角形是等腰三角形。

    等边三角形的性质与判定理解:
    首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
    其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

    等比三角形的尺规做法:
    可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

考点名称:垂直的判定与性质

  • 垂线的定义:
    两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
    直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
    垂直的判定:垂线的定义。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐