如图所示,已知△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且△DEF也是等边三角形。(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2)你-八年级数学

首页 > 考试 > 数学 > 初中数学 > 等边三角形/2020-05-20 / 加入收藏 / 阅读 [打印]

题文

如图所示,已知△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且△DEF也是等边三角形。

(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;
(2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程。
题型:解答题  难度:中档

答案

解:(1)AE=BF=CD,AF=BD=CE
理由:如图:

∵△ABC、△DEF都是等边三角形
∴∠A=∠B=∠C=∠EFD=∠FDE=∠DEF=60°,EF=FD=DE
∴∠1+∠2=∠2+∠3=∠3+∠4=∠4+∠5=∠5+∠6=∠6+∠1=120°
∴∠1=∠3=∠5,∠2=∠4=∠6
∴△AFE≌△BDF≌△CED
∴AE=BF=CD,AF=BD=CE;
(2)用旋转与平移相结合的方法可以相互得到。

据专家权威分析,试题“如图所示,已知△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,..”主要考查你对  等边三角形,全等三角形的性质,图形旋转,平移  等考点的理解。关于这些考点的“档案”如下:

等边三角形全等三角形的性质图形旋转平移

考点名称:等边三角形

  • 等边三角形定义:
    三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
    如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
    1.三边长度相等;
    2.三个内角度数均为60度;
    3.一个内角为60度的等腰三角形。

  • 性质:
    ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
    ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
    ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
    ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
    ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

  • 判定方法:
    ①三边相等的三角形是等边三角形(定义)
    ②三个内角都相等(为60度)的三角形是等边三角形
    ③有一个角是60度的等腰三角形是等边三角形
    ④ 两个内角为60度的三角形是等边三角形
    说明:可首先考虑判断三角形是等腰三角形。

    等边三角形的性质与判定理解:
    首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
    其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

    等比三角形的尺规做法:
    可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

考点名称:全等三角形的性质

  • 全等三角形:
    两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。全等三角形是几何中全等的一种。根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。
    全等三角形的对应边相等,对应角相等。
    ①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
    ②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
    ③有公共边的,公共边一定是对应边;
    ④有公共角的,角一定是对应角;
    ⑤有对顶角的,对顶角一定是对应角。

  • 全等三角形的性质:
    1.全等三角形的对应角相等。
    2.全等三角形的对应边相等。
    3.全等三角形的对应边上的高对应相等。
    4.全等三角形的对应角的角平分线相等。
    5.全等三角形的对应边上的中线相等。
    6.全等三角形面积相等。
    7.全等三角形周长相等。
    8.全等三角形的对应角的三角函数值相等。

  •  

考点名称:图形旋转

  • 定义:
    在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。
    图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

  • 图形旋转性质:
    (1)对应点到旋转中心的距离相等。
    (2)对应点与旋转中心所连线段的夹角等于旋转角。
    旋转对称中心
    把一个图形绕着一个点旋转一定的角度后,与原来的图形相吻合,这种图形叫做 旋转对称图形,这个定点叫做 旋转对称中心,旋转的角度叫做 旋转角。(旋转角大于0°小于360°)

考点名称:平移

  • 定义:
    将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。

  • 平移基本性质:
    经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
    平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
    (1)图形平移前后的形状和大小没有变化,只是位置发生变化;
    (2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
    (3)多次连续平移相当于一次平移。
    (4)偶数次对称后的图形等于平移后的图形。
    (5)平移是由方向和距离决定的。
    这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
    平移的条件:确定一个平移运动的条件是平移的方向和距离。

    平移的三个要点
    1 原来的图形的形状和大小和平移后的图形是全等的。
    2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
    3 平移的距离。(长度,如7厘米,8毫米等)

    平移作用:
    1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
    2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。

  • 平移作图的步骤:
    (1)找出能表示图形的关键点;
    (2)确定平移的方向和距离;
    (3)按平移的方向和距离确定关键点平移后的对应点;
    (4)按原图的顺序,连结各对应点。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐