如图所示,已知,如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD,又DM⊥BC,AB=10㎝。(1)求BE的长;(2)求证:BM=EM。-八年级数学

首页 > 考试 > 数学 > 初中数学 > 等边三角形/2020-05-20 / 加入收藏 / 阅读 [打印]

题文

如图所示,已知,如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD,又DM⊥BC,AB=10㎝。

(1)求BE的长;
(2)求证:BM=EM。
题型:解答题  难度:中档

答案

解:(1)∵△ABC是等边三角形
∴AB=AC=BC=10cm
又∵D是AC的中点,
∴CD=AC=5cm
又∵CD=CE
∴CE=5cm
BE=BC+CE=10+5=15cm;
(2) 证明:∵△ABC是等边三角形,D是AC的中点,
∴BD平分∠ABC(三线合一),

∵CE=CD,

又∵

又∵
∴2∠DBC=2∠E,
∴∠DBC=∠E,
∴BD=DE,
又∵DM⊥BE,
∴BM=EM。

据专家权威分析,试题“如图所示,已知,如图,△ABC是等边三角形,BD是中线,延长BC至E,..”主要考查你对  等边三角形,垂直平分线的性质  等考点的理解。关于这些考点的“档案”如下:

等边三角形垂直平分线的性质

考点名称:等边三角形

  • 等边三角形定义:
    三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
    如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
    1.三边长度相等;
    2.三个内角度数均为60度;
    3.一个内角为60度的等腰三角形。

  • 性质:
    ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
    ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
    ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
    ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
    ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

  • 判定方法:
    ①三边相等的三角形是等边三角形(定义)
    ②三个内角都相等(为60度)的三角形是等边三角形
    ③有一个角是60度的等腰三角形是等边三角形
    ④ 两个内角为60度的三角形是等边三角形
    说明:可首先考虑判断三角形是等腰三角形。

    等边三角形的性质与判定理解:
    首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
    其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

    等比三角形的尺规做法:
    可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

考点名称:垂直平分线的性质

  • 垂直平分线的概念:
    垂直于一条线段并且平分这条线段的直线,叫做这条线段的垂直平分线(中垂线)。
    如图:直线MN即为线段AB的垂直平分线。

  • 垂直平分线的性质:
    1.垂直平分线垂直且平分其所在线段。
    2.垂直平分线上任意一点,到线段两端点的距离相等。
    逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
    3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
    4.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相 等。
    (此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。)

    判定:
    ①利用定义;
    ②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
    (即线段垂直平分线可以看成到线段两端点距离相等的点的集合)

  • 尺规作法:(用圆规作图)
    1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
    2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到两个交点(两交点交与线段的异侧)。
    3、连接这两个交点。
    原理:等腰三角形的高垂直平分底边。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐