已知,如图:在△ABC中,∠ABC=70°,∠ACB=50°,E分别为AC、AB上的点,且BE=CD,G、M、N分别为BC、BD、CE的中点。(1)求∠MGN与∠A的度数相等吗?说明理由。(2)判断△GMN的形状,说明-八年级数学

首页 > 考试 > 数学 > 初中数学 > 等边三角形/2020-05-20 / 加入收藏 / 阅读 [打印]

题文

已知,如图:在△ABC中,∠ABC = 70°,∠ACB = 50°,E分别为AC、AB上的点,且BE=CD,G、M、N分别为BC、BD、CE的中点。
(1)求∠MGN与∠A的度数相等吗?说明理由。
(2)判断△GMN的形状,说明理由。
题型:解答题  难度:中档

答案

解:(1)相等;
∵G、M、N分别为BC、BD、CE的中点,
∴GM∥CD,GN∥BE,
∴∠BGM=∠ACB=50°,∠CGN=∠ABC=70°,
∴∠MGN=180°-∠BGM-∠CGN=60°,
已知∠ABC=70°,∠ACB=50°,
∴∠A=180°-∠ABC-∠ACB=60°,
∴∠MGN=∠A;
(2)等边三角形;
∵G、M、N分别为BC、BD、CE的中点,
∴GM=CD,GN=BE,
又已知BE=CD,
∴GM=GN,
∴∠GMN=∠CNM,
又∵∠MGN=60°,
∴∠GMN=∠CNM=(180°-60°)=60°,
∴∠GMN=∠CNM=∠MGN=60°,
∴△GMN为等边三角形。

据专家权威分析,试题“已知,如图:在△ABC中,∠ABC=70°,∠ACB=50°,E分别为AC、AB上的点..”主要考查你对  等边三角形,三角形的内角和定理,三角形中位线定理  等考点的理解。关于这些考点的“档案”如下:

等边三角形三角形的内角和定理三角形中位线定理

考点名称:等边三角形

  • 等边三角形定义:
    三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
    如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
    1.三边长度相等;
    2.三个内角度数均为60度;
    3.一个内角为60度的等腰三角形。

  • 性质:
    ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
    ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
    ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
    ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
    ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

  • 判定方法:
    ①三边相等的三角形是等边三角形(定义)
    ②三个内角都相等(为60度)的三角形是等边三角形
    ③有一个角是60度的等腰三角形是等边三角形
    ④ 两个内角为60度的三角形是等边三角形
    说明:可首先考虑判断三角形是等腰三角形。

    等边三角形的性质与判定理解:
    首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
    其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

    等比三角形的尺规做法:
    可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐