已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其B,C,D点的坐标分别为(1,2),(1,1),(3,1)。(1)求E点和A点的坐标;(2)试以点P(0,2)为位似中心,作出相-九年级数学

首页 > 考试 > 数学 > 初中数学 > 等边三角形/2020-05-20 / 加入收藏 / 阅读 [打印]

题文

已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其B,C,D点的坐标分别为(1,2),(1,1),(3,1)。

(1)求E点和A点的坐标;
(2)试以点P(0,2)为位似中心,作出相似比为3的位似图形A1B1C1D1E1,并写出各对应点的坐标;
(3)将图形A1B1C1D1E1向右平移4个单位长度后,再作关于x轴的对称图形,得到图形A2B2C2D2E2,这时它的各顶点坐标分别是多少?
题型:解答题  难度:中档

答案

解:(1)
(2),B1(3,2),C1(3,-1),D1(9,-1),E1(9,2),图“略”。
(3),B2(7,-2),C2(7,1),D2(13,1),E2(13,-2)。

据专家权威分析,试题“已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其..”主要考查你对  等边三角形,轴对称,矩形,矩形的性质,矩形的判定,位似,平移  等考点的理解。关于这些考点的“档案”如下:

等边三角形轴对称矩形,矩形的性质,矩形的判定位似平移

考点名称:等边三角形

  • 等边三角形定义:
    三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
    如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
    1.三边长度相等;
    2.三个内角度数均为60度;
    3.一个内角为60度的等腰三角形。

  • 性质:
    ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
    ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
    ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
    ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
    ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

  • 判定方法:
    ①三边相等的三角形是等边三角形(定义)
    ②三个内角都相等(为60度)的三角形是等边三角形
    ③有一个角是60度的等腰三角形是等边三角形
    ④ 两个内角为60度的三角形是等边三角形
    说明:可首先考虑判断三角形是等腰三角形。

    等边三角形的性质与判定理解:
    首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
    其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

    等比三角形的尺规做法:
    可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

考点名称:轴对称

  • 轴对称的定义:
    把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

  • 轴对称的性质:
    (1)对应点所连的线段被对称轴垂直平分;
    (2)对应线段相等,对应角相等;
    (3)关于某直线对称的两个图形是全等图形。

  • 轴对称的判定:
    如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
    这样就得到了以下性质:
    1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
    2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
    3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。 
    4.对称轴是到线段两端距离相等的点的集合。

    轴对称作用:
    可以通过对称轴的一边从而画出另一边。
    可以通过画对称轴得出的两个图形全等。
    扩展到轴对称的应用以及函数图像的意义。

    轴对称的应用:
    关于平面直角坐标系的X,Y对称意义
    如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
    相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

    关于二次函数图像的对称轴公式(也叫做轴对称公式 )
    设二次函数的解析式是 y=ax2+bx+c
    则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

    在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
    譬如,等腰三角形经常添设顶角平分线;
    矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
    正方形,菱形问题经常添设对角线等等。
    另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,
    或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

考点名称:矩形,矩形的性质,矩形的判定

  • 矩形:
    是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

  • 矩形的性质:
    1.矩形的4个内角都是直角;
    2.矩形的对角线相等且互相平分;
    3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
    4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
    5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
    6.顺次连接矩形各边中点得到的四边形是菱形

  • 矩形的判定
    ①定义:有一个角是直角的平行四边形是矩形
    ②定理1:有三个角是直角的四边形是矩形
    ③定理2:对角线相等的平行四边形是矩形
    ④对角线互相平分且相等的四边形是矩形
    矩形的面积:S矩形=长×宽=ab。

  • 黄金矩形:
    宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐