已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其B,C,D点的坐标分别为(1,2),(1,1),(3,1)。(1)求E点和A点的坐标;(2)试以点P(0,2)为位似中心,作出相-九年级数学

首页 > 考试 > 数学 > 初中数学 > 等边三角形/2020-05-20 / 加入收藏 / 阅读 [打印]

黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。

考点名称:位似

  • 位似图形:
    如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,那么这两个图形叫做位似图形。位似图形对应点连线的交点是位似中心,这时的相似比又称为位似比。
    注:
    ①位似图形是相似图形的特例;
    ②位似图形一定是相似图形,但相似图形不一定是位似图形;
    ③位似图形的对应边互相平行或共线。

  • 位似图形的性质:
    位似图形的任意一对对应点与位似中心在同一直线上,它们到位似中心的距离之比等于相似比。 
    1.位似图形对应线段的比等于相似比。
    2.位似图形的对应角都相等。
    3.位似图形对应点连线的交点是位似中心。
    4.位似图形面积的比等于相似比的平方。
    5.位似图形高、周长的比都等于相似比。
    6.位似图形对应边互相平行或在同一直线上。

  • 位似图形作用:
    利用位似可以将一个图形任意放大或缩小。
    位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。
    根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。
    作图步骤:(位似比,即位似图形的相似比,指的是要求画的新图形与参照的原图形的相似比)
    ①首先确定位似中心,位似中心的位置可随意选择;
    ②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;
    ③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;
    ④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形,最好做两个。

    位似变换:
    把一个几何图形变换成与之位似的图形,叫做位似变换。
    物理中的透镜成像就是一种位似变换,位似中心为光心。
    位似变换应用极为广泛,特别是可以证明三点共线等问题。

考点名称:平移

  • 定义:
    将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。

  • 平移基本性质:
    经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
    平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
    (1)图形平移前后的形状和大小没有变化,只是位置发生变化;
    (2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
    (3)多次连续平移相当于一次平移。
    (4)偶数次对称后的图形等于平移后的图形。
    (5)平移是由方向和距离决定的。
    这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
    平移的条件:确定一个平移运动的条件是平移的方向和距离。

    平移的三个要点
    1 原来的图形的形状和大小和平移后的图形是全等的。
    2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
    3 平移的距离。(长度,如7厘米,8毫米等)

    平移作用:
    1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
    2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。

  • 平移作图的步骤:
    (1)找出能表示图形的关键点;
    (2)确定平移的方向和距离;
    (3)按平移的方向和距离确定关键点平移后的对应点;
    (4)按原图的顺序,连结各对应点。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐