如图,△ABC是等边三角形,D是AC的中点,F为边AB上一动点,AF=nBF,E为直线BC上一点,且∠EDF=120°.(1)如图1,当n=2时,求=_________;(2)如图2,当n=时,求证:CD=2CE;(3)如图-八年级数学

首页 > 考试 > 数学 > 初中数学 > 等边三角形/2020-05-20 / 加入收藏 / 阅读 [打印]

题文

如图,△ABC是等边三角形,D是AC的中点,F为边AB上一动点,AF=nBF,E为直线BC上一点,且∠EDF=120°.

(1)如图1,当n=2时,求=_________
(2)如图2,当n=时,求证:CD=2CE;
(3)如图3,过点D作DM⊥BC于M,当_________,C点为线段EM的中点.

题型:解答题  难度:中档

答案

(1)解:过D作DG∥BC交AB于G,如图1,
∵D是AC的中点,
∴DG为△ABC的中位线,
∵△ABC是等边三角形,
∴∠ACD=∠ABC=60°,
∴∠DCE=120°,
又∵DG∥BC,
∴∠FGD=120°,∠GDC=120°,△AGD为等边三角形,
而∠EDF=120°,
∴∠GDF=∠CDE,
∴△GDF∽△CDE,
∴FG:CE=DG:DC,
即CE:DC=FG:DG,
而DG=AG=BG,AF=2BF,
设BF=x,AF=2x,
则AB=3x,AG=x,FG=x﹣x=x,
∴CE:DC=FG:DG=FG:AG=x:x=1:3.
故答案为
(2)证明:过D作DG∥AB交AB于G,如图2,
当n=时,则DG为△ABC的中位线,
同(1)一样可证得△GDF∽△CDE,
∴FG:CE=DG:DC,即CE:DC=FG:DG,
而AF=BF,设BF=3x,AF=x,
则AB=4x,AG=2x,GF=x,
∴CE:DC=FG:AG=x:2x,
∴CD=2CE;
(3)解:过D作DG∥AB交AB于G,如图3,
由前面可得CE:DC=FG:AG;
∵DM⊥BC,
∴∠MDC=30°,
∴MC=DC,
而C点为线段EM的中点,
∴CE=DC,
∴FG=AG,
∴FG=BG,即F为BG的中点,F为AB的四等分点,
∴AF=3BF,
故答案为n=3.










据专家权威分析,试题“如图,△ABC是等边三角形,D是AC的中点,F为边AB上一动点,AF=nBF..”主要考查你对  等边三角形,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

等边三角形相似三角形的性质

考点名称:等边三角形

  • 等边三角形定义:
    三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
    如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
    1.三边长度相等;
    2.三个内角度数均为60度;
    3.一个内角为60度的等腰三角形。

  • 性质:
    ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
    ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
    ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
    ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
    ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

  • 判定方法:
    ①三边相等的三角形是等边三角形(定义)
    ②三个内角都相等(为60度)的三角形是等边三角形
    ③有一个角是60度的等腰三角形是等边三角形
    ④ 两个内角为60度的三角形是等边三角形
    说明:可首先考虑判断三角形是等腰三角形。

    等边三角形的性质与判定理解:
    首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
    其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

    等比三角形的尺规做法:
    可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

考点名称:相似三角形的性质

  • 相似三角形性质定理:
    (1)相似三角形的对应角相等。
    (2)相似三角形的对应边成比例。
    (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
    (4)相似三角形的周长比等于相似比。
    (5)相似三角形的面积比等于相似比的平方。
    (6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐