如图,△ABE和△ACD都是等边三角形,△EAC旋转后能与△ABD重合,EC与BD相交于点F。(1)试说明△AEC≌△ABD;(2)求∠DFC的度数。-七年级数学

首页 > 考试 > 数学 > 初中数学 > 等边三角形/2020-05-20 / 加入收藏 / 阅读 [打印]

题文

如图,△ABE和△ACD都是等边三角形,△EAC旋转后能与△ABD重合,EC与BD相交于点F。
(1)试说明△AEC≌△ABD;
(2)求∠DFC的度数。
题型:证明题  难度:中档

答案

证明:(1)∵△ABE和△ACD都是等边三角形,
∴AE=AB,AD=AC,∠EAB=∠DAC=60°,
∴∠EAB+∠BAC=∠DAC+∠BAC,
即∠EAC=∠BAD,
在△AEC和△ABD中

∴△AEC≌△ABD;
(2)∵△AEC≌△ABD,
∴∠AEC=∠ABD,
∵∠AGC=∠AEG+∠EAB=∠AEC+60°,
∴∠AGC=∠GFB+∠ABD=∠GFB+∠AEC,
∴∠AEC+60°=∠GFB+∠AEC,
∴∠GFB=60°,
∴∠DFC=∠GFB=60°。

据专家权威分析,试题“如图,△ABE和△ACD都是等边三角形,△EAC旋转后能与△ABD重合,EC与..”主要考查你对  等边三角形,对顶角,同位角,内错角,同旁内角,三角形的外角性质,全等三角形的性质,三角形全等的判定  等考点的理解。关于这些考点的“档案”如下:

等边三角形对顶角,同位角,内错角,同旁内角三角形的外角性质全等三角形的性质三角形全等的判定

考点名称:等边三角形

  • 等边三角形定义:
    三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
    如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
    1.三边长度相等;
    2.三个内角度数均为60度;
    3.一个内角为60度的等腰三角形。

  • 性质:
    ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
    ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
    ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
    ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
    ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

  • 判定方法:
    ①三边相等的三角形是等边三角形(定义)
    ②三个内角都相等(为60度)的三角形是等边三角形
    ③有一个角是60度的等腰三角形是等边三角形
    ④ 两个内角为60度的三角形是等边三角形
    说明:可首先考虑判断三角形是等腰三角形。

    等边三角形的性质与判定理解:
    首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
    其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

    等比三角形的尺规做法:
    可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

考点名称:对顶角,同位角,内错角,同旁内角

  • 对顶角
    一个角的两边分别是另一个角的反向延升线,这两个角是对顶角两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
    两条直线相交,构成两对对顶角。互为对顶角的两个角相等(对顶角的性质)。
    对顶角是针对具有特殊位置的两个角的名称;
    对顶角相等反映的是两个角之间的大小关系。

    同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角。

    内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

    同旁内角: 两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角。

  • 各种角的关系图示:

    直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。
    如图中,∠1与∠3,∠2与∠4是对顶角。
    其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;
    ∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;
    ∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

考点名称:三角形的外角性质

  • 三角形的外角
    三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。

    ∠1是三角形的外角。

  • 三角形的外角特征:
    ①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
    ②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
    ③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
     
    性质:
    ①. 三角形的外角与它相邻的内角互补。
    ②. 三角形的一个外角等于和它不相邻的两个内角的和。
    ③. 三角形的一个外角大于任何一个和它不相邻的内角。
    ④. 三角形的外角和等于360°。
    设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。

    定理:三角形的一个外角等于不相邻的两个内角和。
    定理:三角形的三个内角和为180度。

考点名称:全等三角形的性质

  • 全等三角形:
    两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。全等三角形是几何中全等的一种。根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。
    全等三角形的对应边相等,对应角相等。
    ①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
    ②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
    ③有公共边的,公共边一定是对应边;
    ④有公共角的,角一定是对应角;
    ⑤有对顶角的,对顶角一定是对应角。

  • 全等三角形的性质:
    1.全等三角形的对应角相等。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐