已知,如图,在直角梯形ABCD中,AD∥BC,BC=5cm,CD=6cm,∠DCB=60°,∠ABC=90度.等边三角形MPN(N为不动点)的边长为acm,边MN和直角梯形ABCD的底边BC都在直线l上,NC=8cm.将直角-数学

首页 > 考试 > 数学 > 初中数学 > 等边三角形/2020-05-20 / 加入收藏 / 阅读 [打印]

3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。 
4.对称轴是到线段两端距离相等的点的集合。

轴对称作用:
可以通过对称轴的一边从而画出另一边。
可以通过画对称轴得出的两个图形全等。
扩展到轴对称的应用以及函数图像的意义。

轴对称的应用:
关于平面直角坐标系的X,Y对称意义
如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

关于二次函数图像的对称轴公式(也叫做轴对称公式 )
设二次函数的解析式是 y=ax2+bx+c
则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
譬如,等腰三角形经常添设顶角平分线;
矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
正方形,菱形问题经常添设对角线等等。
另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,
或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

考点名称:梯形,梯形的中位线

  • 梯形的定义:
    一组对边平行,另一组对边不平行的四边形叫做梯形。
    梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底,梯形中不平行的两边叫做梯形的腰,梯形的两底的距离叫做梯形的高。
    梯形的中位线:
    连结梯形两腰的中点的线段。 

  • 梯形性质:
    ①梯形的上下两底平行;
    ②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
    ③等腰梯形对角线相等。

    梯形判定:
    1.一组对边平行,另一组对边不平行的四边形是梯形。
    2.一组对边平行且不相等的四边形是梯形。

    梯形中位线定理:
    梯形中位线平行于两底,并且等于两底和的一半。
    梯形中位线×高=(上底+下底)×高=梯形面积
    梯形中位线到上下底的距离相等
    中位线长度=(上底+下底)

    梯形的周长与面积
    梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。
    等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。
    梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。
    变形1:h=2s÷(a+b);
    变形2:a=2s÷h-b;
    变形3:b=2s÷h-a。
    另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。
    对角线互相垂直的梯形面积为:对角线×对角线÷2。

  • 梯形的分类


    等腰梯形:两腰相等的梯形。
    直角梯形:有一个角是直角的梯形。

    等腰梯形的性质:
    (1)等腰梯形的同一底边上的两个角相等。
    (2)等腰梯形的对角线相等。
    (3)等腰梯形是轴对称图形。

    等腰梯形的判定:
    (1)定义:两腰相等的梯形是等腰梯形
    (2)定理:在同一底上的两个角相等的梯形是等腰梯形
    (3)对角线相等的梯形是等腰梯形。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐