已知点D是等边△ABC的边BC上一点,以AD为边向右作等边△ADF,DF、AC交于点N.(1)如图①,当AD⊥BC时,请说明DF⊥AC的理由;(2)如图②,当点D在BC上移动时,以AD为边再向左作等边△AD-数学

首页 > 考试 > 数学 > 初中数学 > 等边三角形/2020-05-20 / 加入收藏 / 阅读 [打印]

题文

已知点D是等边△ABC的边BC上一点,以AD为边向右作等边△ADF,DF、AC交于点N.
(1)如图①,当AD⊥BC时,请说明DF⊥AC的理由;
(2)如图②,当点D在BC上移动时,以AD为边再向左作等边△ADE,DE、AB交于M,试问线段AM和AN有什么数量关系?请说明你的理由;
(3)在(2)的基础上,若等边△ABC的边长为2,直接写出DM+DN的最小值.

题型:解答题  难度:中档

答案

(1)证明:∵△ABC是等边三角形,AD⊥BC,
∴∠CAD=
1
2
×60°=30°,
又∵△ADF是等边三角形,
∴∠DAF=30°,
∴∠DAN=∠FAN=30°,
∴AN⊥DF,


即DF⊥AC;

(2)AM=AN.
理由如下:如图,连接AD,
∵△ADE、△ADF是等边三角形,
∴∠ADE=∠ADF=60°,AD=AF,
∵∠DAM+∠CAD=60°,
∠FAN+∠CAD=60°,
∴∠DAM=∠FAN,
在△ADM和△AFN中,

∠DAM=∠FAN
AD=AF
∠ADE=∠ADF

∴△ADM≌△AFN(ASA),
∴AM=AN;

(3)根据垂线段最短,DM⊥AB、DN⊥AC时,DM、DN最短,
设等边△ABC的高线为h,
则S△ABC=
1
2
AC?h=
1
2
AB?DM+
1
2
AC?DN,
∵AB=AC,
∴DM+DN=h,
∵等边△ABC的边长为2,
∴h=2×

3
2
=

3

∴DM+DN的最小值为

3

据专家权威分析,试题“已知点D是等边△ABC的边BC上一点,以AD为边向右作等边△ADF,DF、A..”主要考查你对  等边三角形  等考点的理解。关于这些考点的“档案”如下:

等边三角形

考点名称:等边三角形

  • 等边三角形定义:
    三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
    如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
    1.三边长度相等;
    2.三个内角度数均为60度;
    3.一个内角为60度的等腰三角形。

  • 性质:
    ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
    ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
    ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
    ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
    ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

  • 判定方法:
    ①三边相等的三角形是等边三角形(定义)
    ②三个内角都相等(为60度)的三角形是等边三角形
    ③有一个角是60度的等腰三角形是等边三角形
    ④ 两个内角为60度的三角形是等边三角形
    说明:可首先考虑判断三角形是等腰三角形。

    等边三角形的性质与判定理解:
    首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
    其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

    等比三角形的尺规做法:
    可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐