已知如下图所示,在等边△ABC和等边△ADE中,点B、A、D在一条直线上,BE、CD交于F.(1)求证:△BAE≌△CAD.(2)求∠BFC的大小.(3)在图1的基础上,将△ADE绕点A按顺时针方向旋转180°,此-数学
题文
已知如下图所示,在等边△ABC和等边△ADE中,点B、A、D在一条直线上,BE、CD交于F. (1)求证:△BAE≌△CAD. (2)求∠BFC的大小. (3)在图1的基础上,将△ADE绕点A按顺时针方向旋转180°,此时BE交CD的延长线于点F,其他条件不变,得到图2所示的图形,请直接写出(1)、(2)中结论是否仍然成立. |
答案
(1)证明:∵等边△ABC和等边△ADE, ∴AB=AC,AD=AE,∠CAB=∠EAD=60°, ∴∠CAE=60°, ∠BAE=∠CAD=120°, ∴△BAE≌△CAD, (2)∵△BAE≌△CAD, ∴∠ADC=∠AEB, ∵∠BFC=∠ABE+∠ADC, ∴∠BFC=∠ABE+∠AEB, ∵∠ABE+∠AEB=180°-∠BAE,∠BAE=120°, ∴∠BFC=60°, (3)成立. ∵等边△ABC和等边△ADE, ∴AE=AD,AC=AB,∠BAE=∠CAD=60°, ∴△BAE≌△CAD, ∵∠CDA=∠AEB, ∴∠ABE+∠BDF=∠ABE+∠CDA=∠ABE+∠AEB, ∵∠ABE+∠AEB=180°-∠BAE=180°-60°=120°, ∴∠ABE+∠BDF=120°, ∠BFC=180°-(∠ABE+∠BDF)=60°. |
据专家权威分析,试题“已知如下图所示,在等边△ABC和等边△ADE中,点B、A、D在一条直线上..”主要考查你对 等边三角形 等考点的理解。关于这些考点的“档案”如下:
等边三角形
考点名称:等边三角形
- 等边三角形定义:
三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
1.三边长度相等;
2.三个内角度数均为60度;
3.一个内角为60度的等腰三角形。 性质:
①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)判定方法:
①三边相等的三角形是等边三角形(定义)
②三个内角都相等(为60度)的三角形是等边三角形
③有一个角是60度的等腰三角形是等边三角形
④ 两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。
等边三角形的性质与判定理解:
首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。等比三角形的尺规做法:
可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |