P是等边△ABC内部一点,∠APB、∠BPC、∠CPA的大小之比是5:6:7,所以PA、PB、PC的长为边的三角形的三个角的大小之比是______.-数学

首页 > 考试 > 数学 > 初中数学 > 等边三角形/2020-05-20 / 加入收藏 / 阅读 [打印]

题文

P是等边△ABC内部一点,∠APB、∠BPC、∠CPA的大小之比是5:6:7,所以PA、PB、PC的长为边的三角形的三个角的大小之比是______.
题型:填空题  难度:中档

答案

如图所示:
将含有PA、PB边的三角形△BPA,以B为轴心,顺时针方向旋转60°,
则将△BPA移到△BDC,△BDC≌△BPA,BP=BD DC=PA,∠BDC=100°,
因为旋转60°,所以△BDP为等边形,等边三角形,三边相等,三角相等都是60°,
给我们解题极大方便,因为PD=PB,△PDC即由,
PA、PB、PC构成的三角形∠DPC=120°-60°=60°,
∠PDC=100°-60°=40°,
∠DCP=180°-60°-40°=80°,
40:60:80=2:3:4,
(其实这种解题方法思路是十分清晰的,为了把三条分散的射线构成一个三角形,
自然要把PB、PA所在的△PAB,整体移到PC这一边,BA移60°到BC和BC重合,P落到D上.
因为移动60°构成了△PBD为等边形PB=BD=PD,于是△PDC就是PA、PB、PC,构成的三角形,
由于AB=BC,AB与BC重合△ABP≌△BCD,保留了原来已知条件,即BD=BP,DC=PA,
∠BDC=100°移动60°构成的△PBD等边等角,
于是顺理成章的把PB用等长线把PD代替,这样才能构成△PDC,PD=PB,DC=PA,
∴△PDC为PA、PB、PC三条线段构成的三角形.
已知条件∠BPC=120°,仍然保留∠DPC=120°-60°=60°,
∠BDC=100°仍然保留∠PDC=100°-60°=40°,
∠PCD=180°-60°-40°=80°,
(40:60:80=2:3:4.)

据专家权威分析,试题“P是等边△ABC内部一点,∠APB、∠BPC、∠CPA的大小之比是5:6:7,所以..”主要考查你对  等边三角形  等考点的理解。关于这些考点的“档案”如下:

等边三角形

考点名称:等边三角形

  • 等边三角形定义:
    三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
    如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
    1.三边长度相等;
    2.三个内角度数均为60度;
    3.一个内角为60度的等腰三角形。

  • 性质:
    ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
    ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
    ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
    ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
    ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

  • 判定方法:
    ①三边相等的三角形是等边三角形(定义)
    ②三个内角都相等(为60度)的三角形是等边三角形
    ③有一个角是60度的等腰三角形是等边三角形
    ④ 两个内角为60度的三角形是等边三角形
    说明:可首先考虑判断三角形是等腰三角形。

    等边三角形的性质与判定理解:
    首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
    其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

    等比三角形的尺规做法:
    可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐