如图,在平面直角坐标系中A(-1,5),B(-1,0)C(-4,3)(1)求出△ABC的面积。(2)下图中作出△ABC关于y轴对称图形△A1B1C1(3)写出A1B1C1的坐标-八年级数学

题文

如图,在平面直角坐标系中A(-1,5),B(-1,0)C(-4,3)
(1)求出△ABC的面积。
(2)下图中作出△ABC关于y轴对称图形△A1B1C1
(3)写出A1B1C1的坐标

题型:解答题  难度:中档

答案

解:(1)
(2)如图:

(3)A1(1,5)B1(1,0) C1(4,3)

据专家权威分析,试题“如图,在平面直角坐标系中A(-1,5),B(-1,0)C(-4,3)(1)求出△AB..”主要考查你对  三角形的周长和面积,轴对称,用坐标表示位置  等考点的理解。关于这些考点的“档案”如下:

三角形的周长和面积轴对称用坐标表示位置

考点名称:三角形的周长和面积

  • 三角形的概念:
    由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

    构成三角形的元素:
    边:组成三角形的线段叫做三角形的边;
    顶点:相邻两边的公共端点叫做三角形的顶点;
    内角:相邻两边所组成的角叫做三角形的内角,简称三角形的角。

    三角形有下面三个特性:
    (1)三角形有三条线段;
    (2)三条线段不在同一直线上;
    (3)首尾顺次相接。

    三角形的表示:
    用符号“△,顶点是A、B、C的三角形记作“△ABC”,读作ABC”。

  • 三角形的分类:
    (1)三角形按边的关系分类如下:

    (2)三角形按角的关系分类如下:

    把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

  • 三角形的周长和面积:
    三角形的周长等于三角形三边之和。
    三角形面积=(底×高)÷2。

考点名称:轴对称

  • 轴对称的定义:
    把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

  • 轴对称的性质:
    (1)对应点所连的线段被对称轴垂直平分;
    (2)对应线段相等,对应角相等;
    (3)关于某直线对称的两个图形是全等图形。

  • 轴对称的判定:
    如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
    这样就得到了以下性质:
    1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
    2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
    3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。 
    4.对称轴是到线段两端距离相等的点的集合。

    轴对称作用:
    可以通过对称轴的一边从而画出另一边。
    可以通过画对称轴得出的两个图形全等。
    扩展到轴对称的应用以及函数图像的意义。

    轴对称的应用:
    关于平面直角坐标系的X,Y对称意义
    如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
    相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

    关于二次函数图像的对称轴公式(也叫做轴对称公式 )
    设二次函数的解析式是 y=ax2+bx+c
    则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

    在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
    譬如,等腰三角形经常添设顶角平分线;
    矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
    正方形,菱形问题经常添设对角线等等。
    另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,
    或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

考点名称:用坐标表示位置

  • 点的坐标的概念:
    点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
    平面内点的坐标是有序实数对,当a≠b时,(a,b)和(b,a)是两个不同点的坐标。

  • 各象限内点的坐标的特征 :
    点P(x,y)在第一象限;点P(x,y)在第二象限
    点P(x,y)在第三象限;点P(x,y)在第四象限

    坐标轴上的点的特征:
    点P(x,y)在x轴上y=0,x为任意实数
    点P(x,y)在y轴上x=0,y为任意实数
    点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)。

    点P(x,y)到坐标轴及原点的距离:
    (1)点P(x,y)到x轴的距离等于|y|;
    (2)点P(x,y)到y轴的距离等于|x|;
    (3)点P(x,y)到原点的距离等于

  • 坐标表示位置步骤:
    利用平面直角坐标系绘制区域内一些地点分布情况的平面图的过程如下:
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐