如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.(1)如图1,当点P为线段EC中点时,易证:PR+PQ=(不需证明).(2-九年级数学

题文

如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.
(1)如图1,当点P为线段EC中点时,易证:PR+PQ=(不需证明).
(2)如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
(3)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.
题型:解答题  难度:中档

答案

解:(2)图2中结论PR+PQ=仍成立.
 证明:连接BP,过C点作CK?BD于点K.  
∵四边形ABCD为矩形, ∴∠BCD=90°,
又∵CD=AB=3,BC=4, ∴BD===5. ∵S△BCD=BC×CD=BD×CK,
∴3×4=5CK,
∴CK=
∵S△BCE=BE×CK,S△BEP=PR×BE, S△BCP=PQ×BC,且S△BCE=S△BEP+S△BCP
BE×CK=PR×BE+PQ×BC,
又∵BE=BC,
CK=PR+PQ,
∴CK=PR+PQ,
又∵CK=
∴PR+PQ=;  
(3)连接BP,S△BPE﹣S△BCP=S△BEC
S△BEC 是固定值,
BE=BC 为两个底,
PR,PQ 分别为高,
图3中的结论是PR﹣PQ=

据专家权威分析,试题“如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,..”主要考查你对  三角形的周长和面积,勾股定理,矩形,矩形的性质,矩形的判定  等考点的理解。关于这些考点的“档案”如下:

三角形的周长和面积勾股定理矩形,矩形的性质,矩形的判定

考点名称:三角形的周长和面积

  • 三角形的概念:
    由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

    构成三角形的元素:
    边:组成三角形的线段叫做三角形的边;
    顶点:相邻两边的公共端点叫做三角形的顶点;
    内角:相邻两边所组成的角叫做三角形的内角,简称三角形的角。

    三角形有下面三个特性:
    (1)三角形有三条线段;
    (2)三条线段不在同一直线上;
    (3)首尾顺次相接。

    三角形的表示:
    用符号“△,顶点是A、B、C的三角形记作“△ABC”,读作ABC”。

  • 三角形的分类:
    (1)三角形按边的关系分类如下:

    (2)三角形按角的关系分类如下:

    把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

  • 三角形的周长和面积:
    三角形的周长等于三角形三边之和。
    三角形面积=(底×高)÷2。

考点名称:勾股定理

  • 勾股定理:
    直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐