在直角三角形ABC中,∠A=90°,AD,AE分别是高和角平分线,且△ABE,△AED的面积分别为S1=30,S2=6,求△ADC的面积S.-数学

题文

在直角三角形ABC中,∠A=90°,AD,AE分别是高和角平分线,且△ABE,△AED的面积分别为S1=30,S2=6,求△ADC的面积S.
题型:解答题  难度:中档

答案




设DE=a,则BE=5a,设CD=xa,只要求出x,根据同底等高三角形面积,6x就是三角形ADC的面积.
(1)由射影定理,AC2=CD?BC,AB2=BD?BC,所以
AC2
AB2
=
CD
BD
=
xa
6a
=
x
6

(2)由角平分线性质,
AC
AB
=
CE
BE
=
xa+a
5a
=
x+1
5

(3)联立①②式得到:[
(x+1)
5
]2=
x
6
这是个一元二次方程,
解得x=
3
2
2
3

所以S△ADC=6x=9或4.
故答案为:9或4.

据专家权威分析,试题“在直角三角形ABC中,∠A=90°,AD,AE分别是高和角平分线,且△ABE,..”主要考查你对  三角形的周长和面积  等考点的理解。关于这些考点的“档案”如下:

三角形的周长和面积

考点名称:三角形的周长和面积

  • 三角形的概念:
    由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

    构成三角形的元素:
    边:组成三角形的线段叫做三角形的边;
    顶点:相邻两边的公共端点叫做三角形的顶点;
    内角:相邻两边所组成的角叫做三角形的内角,简称三角形的角。

    三角形有下面三个特性:
    (1)三角形有三条线段;
    (2)三条线段不在同一直线上;
    (3)首尾顺次相接。

    三角形的表示:
    用符号“△,顶点是A、B、C的三角形记作“△ABC”,读作ABC”。

  • 三角形的分类:
    (1)三角形按边的关系分类如下:

    (2)三角形按角的关系分类如下:

    把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

  • 三角形的周长和面积:
    三角形的周长等于三角形三边之和。
    三角形面积=(底×高)÷2。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐