在平面内,分别用3根、5根、6根火柴首尾依次相接,能搭成什么形状的三角形呢?通过尝试,列表如下表示:火柴数356示意图形状等边三角形等腰三角形等边三角形问:(1)4根火柴能搭-七年级数学

题文

在平面内,分别用3根、5根、6根火柴首尾依次相接,能搭成什么形状的三角形呢?通过尝试,列表如下表示:
火柴数 3 5 6
示意图
形状 等边三角形 等腰三角形 等边三角形
问:(1) 4根火柴能搭成三角形吗?
(2) 8根、12根火柴能搭成几种不同形状的三角形?并画出它们的示意图。
火柴数 8 12
示意图
形状
题型:操作题  难度:偏难

答案

(1)不能
(2)等角三角形,等边三角形,图“略”

据专家权威分析,试题“在平面内,分别用3根、5根、6根火柴首尾依次相接,能搭成什么形状..”主要考查你对  三角形的三边关系  等考点的理解。关于这些考点的“档案”如下:

三角形的三边关系

考点名称:三角形的三边关系

  • 三角形的三边关系:
    在三角形中,任意两边和大于第三边,任意两边差小于第三边。
    设三角形三边为a,b,c

    a+b>c
    a+c>b
    b+c>a
    a-b<c
    a-c<b
    b-c<a
    在直角三角形中,设a、b为直角边,c为斜边。
    则两直角边的平方和等于斜边平方。
    在等边三角形中,a=b=c
    在等腰三角形中, a,b为两腰,则a=b
    在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc

  • 三角形的三边关系定理及推论:
    (1)三角形三边关系定理:三角形的两边之和大于第三边。
    推论:三角形的两边之差小于第三边。
    (2)三角形三边关系定理及推论的作用:
    ①判断三条已知线段能否组成三角形;
    ②当已知两边时,可确定第三边的范围;
    ③证明线段不等关系。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐