已知三角形的两边长分别为3和5,第三边长为c,化简.-八年级数学
题文
已知三角形的两边长分别为3和5,第三边长为c,化简. |
答案
解:由三边关系定理,得3+5>c,5﹣3<c,即8>c>2, ∴=|c﹣2|+|c﹣10|=c﹣2+10﹣c=8. |
据专家权威分析,试题“已知三角形的两边长分别为3和5,第三边长为c,化简.-八年级数学-..”主要考查你对 三角形的三边关系,绝对值,二次根式的加减乘除混合运算,二次根式的化简 等考点的理解。关于这些考点的“档案”如下:
三角形的三边关系绝对值二次根式的加减乘除混合运算,二次根式的化简
考点名称:三角形的三边关系
三角形的三边关系:
在三角形中,任意两边和大于第三边,任意两边差小于第三边。
设三角形三边为a,b,c
则
a+b>c
a+c>b
b+c>a
a-b<c
a-c<b
b-c<a
在直角三角形中,设a、b为直角边,c为斜边。
则两直角边的平方和等于斜边平方。
在等边三角形中,a=b=c
在等腰三角形中, a,b为两腰,则a=b
在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc三角形的三边关系定理及推论:
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:
①判断三条已知线段能否组成三角形;
②当已知两边时,可确定第三边的范围;
③证明线段不等关系。
考点名称:绝对值
- 绝对值定义:
在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
绝对值用“||”来表示。
在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。 - 绝对值的意义:
1、几何的意义:
在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。
2、代数的意义:
非负数(正数和0,)
非负数的绝对值是它本身,非正数的绝对值是它的相反数。
互为相反数的两个数的绝对值相等。
a的绝对值用“|a |”表示.读作“a的绝对值”。
实数a的绝对值永远是非负数,即|a |≥0。
互为相反数的两个数的绝对值相等,即|-a|=|a|。
若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3. 绝对值的有关性质:
①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
②绝对值等于0的数只有一个,就是0;
③绝对值等于同一个正数的数有两个,这两个数互为相反数;
④互为相反数的两个数的绝对值相等。
绝对值的化简:
绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
②整数就找到这两个数的相同因数;
③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。
考点名称:二次根式的加减乘除混合运算,二次根式的化简
- 二次根式的加减乘除混合运算:
顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
③运算结果是根式的,一般应表示为最简二次根式。
二次根式的化简:
先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。 二次根式混合运算掌握:
1、确定运算顺序。
2、灵活运用运算定律。
3、正确使用乘法公式。
4、大多数分母有理化要及时。
5、在有些简便运算中也许可以约分,不要盲目有理化。
6、字母运算时注意隐含条件和末尾括号的注明。
7、提公因式时可以考虑提带根号的公因式。二次根式化简方法:
二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
分母有理化:
分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
(1)直接利用二次根式的运算法则:
例:
(2)利用平方差公式:
例:
(3)利用因式分解:
例:(此题可运用待定系数法便于分子的分解)
换元法(整体代入法):
换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
例:在根式中,令,即可得到
原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8提公因式法:
例:计算
巧构常值代入法:
例:已知x2-3x+1=0,求的值。
分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |