若三角形三边长分别为2x,3x,10,其中x为正整数,且周长不超过30,求x的取值范围.写出这个三角形的三边长.-八年级数学
题文
若三角形三边长分别为2x ,3x ,10 ,其中x 为正整数,且周长不超过30 ,求x 的取值范围.写出这个三角形的三边长. |
答案
解:由题意得:2x+3x+1030, 解得:x≤4, 即x可取1、2、3、4; 当x=1时,三边长为2,3,10,构不成三角形; 当x=2时,三边长为4,6,10,构不成三角形; 当x=3时,三边长为6,9,10; 当x=4时,三边长为8,12,10. |
据专家权威分析,试题“若三角形三边长分别为2x,3x,10,其中x为正整数,且周长不超过3..”主要考查你对 三角形的三边关系,一元一次不等式的应用 等考点的理解。关于这些考点的“档案”如下:
三角形的三边关系一元一次不等式的应用
考点名称:三角形的三边关系
三角形的三边关系:
在三角形中,任意两边和大于第三边,任意两边差小于第三边。
设三角形三边为a,b,c
则
a+b>c
a+c>b
b+c>a
a-b<c
a-c<b
b-c<a
在直角三角形中,设a、b为直角边,c为斜边。
则两直角边的平方和等于斜边平方。
在等边三角形中,a=b=c
在等腰三角形中, a,b为两腰,则a=b
在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc三角形的三边关系定理及推论:
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:
①判断三条已知线段能否组成三角形;
②当已知两边时,可确定第三边的范围;
③证明线段不等关系。
考点名称:一元一次不等式的应用
- 一元一次不等式的应用包括两个方面:
1、通过一元一次不等式求字母的取值范围;
2、列一元一次不等式解实际应用题。 - 列不等式解应用题的一般步骤:
(1)审题;
(2)设未知数;
(3)确定包含未知数的不等量关系;
(4)列出不等式;
(5)求出不等式的解集,检验不等式的解是否符合题意;
(6)写出答案。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |