(1)用长度相等的100根火柴杆,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴杆的根数.(2)现有长为150cm的铁丝,要截成n(n>2-数学

题文

(1)用长度相等的100根火柴杆,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴杆的根数.
(2)现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于lcm的整数.如果其中任意3小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段.
题型:解答题  难度:中档

答案

(1)设三角形各边需用火柴杆数目分别为x、y、3x,
依题意有

x+y+3x=100
x≤y≤3x
x+y>3x

由方程可得
100
7
≤x<
50
3

因x为正整数,故x=15或16.
所以满足条件的三角形有15,40,45或16,36,48两组;
(2)这些小段的长度只可能是1,1,2,3,5,8,13,21,34,55,89…
但1+1+2+…+34+55=143<150.
1+1+2+…+34+55+89=232>150.故n的最大值为10,共有以下7种形式:(1,1,2,3,5,8,13,21,34,62)(1,1,2,3,5,8,13,21,35,61)(1,1,2,3,5,8,13,21,36,60)(1,1,2,3,5,8,13,21,37,59)(1,1,2,3,5,8,13,21,35,60)(1,1,2,3,5,8,13,21,36,59)(1,1,2,3,5,8,13,21,36,58).

据专家权威分析,试题“(1)用长度相等的100根火柴杆,摆放成一个三角形,使最大边的长度..”主要考查你对  三角形的三边关系  等考点的理解。关于这些考点的“档案”如下:

三角形的三边关系

考点名称:三角形的三边关系

  • 三角形的三边关系:
    在三角形中,任意两边和大于第三边,任意两边差小于第三边。
    设三角形三边为a,b,c

    a+b>c
    a+c>b
    b+c>a
    a-b<c
    a-c<b
    b-c<a
    在直角三角形中,设a、b为直角边,c为斜边。
    则两直角边的平方和等于斜边平方。
    在等边三角形中,a=b=c
    在等腰三角形中, a,b为两腰,则a=b
    在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc

  • 三角形的三边关系定理及推论:
    (1)三角形三边关系定理:三角形的两边之和大于第三边。
    推论:三角形的两边之差小于第三边。
    (2)三角形三边关系定理及推论的作用:
    ①判断三条已知线段能否组成三角形;
    ②当已知两边时,可确定第三边的范围;
    ③证明线段不等关系。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐