现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个-数学

题文

现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为(  )
A.1个B.2个C.3个D.4个
题型:单选题  难度:偏易

答案

共有4种方案:
①取4cm,6cm,8cm;由于8-4<6<8+4,能构成三角形;
②取4cm,8cm,10cm;由于10-4<8<10+4,能构成三角形;
③取4cm,6cm,10cm;由于6=10-4,不能构成三角形,此种情况不成立;
④取6cm,8cm,10cm;由于10-6<8<10+6,能构成三角形.
所以有3种方案符合要求.故选C.

据专家权威分析,试题“现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒..”主要考查你对  三角形的三边关系  等考点的理解。关于这些考点的“档案”如下:

三角形的三边关系

考点名称:三角形的三边关系

  • 三角形的三边关系:
    在三角形中,任意两边和大于第三边,任意两边差小于第三边。
    设三角形三边为a,b,c

    a+b>c
    a+c>b
    b+c>a
    a-b<c
    a-c<b
    b-c<a
    在直角三角形中,设a、b为直角边,c为斜边。
    则两直角边的平方和等于斜边平方。
    在等边三角形中,a=b=c
    在等腰三角形中, a,b为两腰,则a=b
    在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc

  • 三角形的三边关系定理及推论:
    (1)三角形三边关系定理:三角形的两边之和大于第三边。
    推论:三角形的两边之差小于第三边。
    (2)三角形三边关系定理及推论的作用:
    ①判断三条已知线段能否组成三角形;
    ②当已知两边时,可确定第三边的范围;
    ③证明线段不等关系。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐