小明同学在研究了课本上的一道问题“四根小木棍的长度分别为2cm,3cm,4cm,和5cm,任取其中3根,可以搭成几个不同的三角形?”后,提出下列问题:长度分别为a,b,c(单位:cm)的-数学

题文

小明同学在研究了课本上的一道问题“四根小木棍的长度分别为2cm,3cm,4cm,和5cm,任取其中3根,可以搭成几个不同的三角形?”后,提出下列问题:长度分别为a,b,c(单位:cm)的三根小木棍搭成三角形,已知a,b,c都是整数,且a≤b<c,如果b=5,用满足上述条件的三根小木棍能够搭出几个不同的三角形?请你参与研究,并写出探究过程.
题型:解答题  难度:中档

答案

若三边能构成三角形则必有两边之和大于第三边,即a+b>c,
又b<c,则b<c<a+b,
又c-b<a≤b,故1<a≤5,从而a=2,3,4,5,
当a=2时,5<c<7,此时c=6,
当a=3时,5<c<8,此时c=6,7,
当a=4时,5<c<9,此时c=6,7,8,
当a=5时,5<c<10,此时c=6,7,8,9;
故一共有1+2+3+4=10个.

据专家权威分析,试题“小明同学在研究了课本上的一道问题“四根小木棍的长度分别为2cm,..”主要考查你对  三角形的三边关系  等考点的理解。关于这些考点的“档案”如下:

三角形的三边关系

考点名称:三角形的三边关系

  • 三角形的三边关系:
    在三角形中,任意两边和大于第三边,任意两边差小于第三边。
    设三角形三边为a,b,c

    a+b>c
    a+c>b
    b+c>a
    a-b<c
    a-c<b
    b-c<a
    在直角三角形中,设a、b为直角边,c为斜边。
    则两直角边的平方和等于斜边平方。
    在等边三角形中,a=b=c
    在等腰三角形中, a,b为两腰,则a=b
    在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc

  • 三角形的三边关系定理及推论:
    (1)三角形三边关系定理:三角形的两边之和大于第三边。
    推论:三角形的两边之差小于第三边。
    (2)三角形三边关系定理及推论的作用:
    ①判断三条已知线段能否组成三角形;
    ②当已知两边时,可确定第三边的范围;
    ③证明线段不等关系。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐