一个三角形的三条边长分别是a,b,c(a,b,c都是质数),且a+b+c=16,则这个三角形的形状是()A.直角三角形B.等腰三角形C.等边三角形D.直角三角形或等腰三角形-数学

题文

一个三角形的三条边长分别是a,b,c(a,b,c都是质数),且a+b+c=16,则这个三角形的形状是(  )
A.直角三角形
B.等腰三角形
C.等边三角形
D.直角三角形或等腰三角形
题型:单选题  难度:偏易

答案

∵a+b+c=16,a,b,c都是质数,则a,b,c的值一定是:1或2或3或5或7或11或13.
∴a,b,c中有一个是2,不妨设a=2.
∴b+c=14,且b、c都是奇质数,
又∵14=3+11=7+7,
而2+3<11,∴以2,3,11为边不能组成三角形;
2+7>7,∴以2,7,7为边能组成三角形.
∴这个三角形是等腰三角形.

据专家权威分析,试题“一个三角形的三条边长分别是a,b,c(a,b,c都是质数),且a+b+c=..”主要考查你对  三角形的三边关系  等考点的理解。关于这些考点的“档案”如下:

三角形的三边关系

考点名称:三角形的三边关系

  • 三角形的三边关系:
    在三角形中,任意两边和大于第三边,任意两边差小于第三边。
    设三角形三边为a,b,c

    a+b>c
    a+c>b
    b+c>a
    a-b<c
    a-c<b
    b-c<a
    在直角三角形中,设a、b为直角边,c为斜边。
    则两直角边的平方和等于斜边平方。
    在等边三角形中,a=b=c
    在等腰三角形中, a,b为两腰,则a=b
    在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc

  • 三角形的三边关系定理及推论:
    (1)三角形三边关系定理:三角形的两边之和大于第三边。
    推论:三角形的两边之差小于第三边。
    (2)三角形三边关系定理及推论的作用:
    ①判断三条已知线段能否组成三角形;
    ②当已知两边时,可确定第三边的范围;
    ③证明线段不等关系。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐