已知四边形ABCD中,AB=CD,E、F分别为AD、BC的中点,BA、CD的延长线分别与FE的延长线交于G、H。求证:∠BGF=∠CHF。-八年级数学

题文

已知四边形ABCD中,AB=CD,E、F分别为AD、BC的中点,BA、CD的延长线分别与FE的延长线交于G、H。
求证:∠BGF=∠CHF。
题型:证明题  难度:中档

答案

证明:连结BD,作EK//AB交BD于K,连结KF。

在△DAB中,E为AD中点,EK//AB
所以K为BD中点,
所以
同理
因为AB=CD
所以∠1=∠2
即∠3=∠4
所以∠BGF=∠CHF

据专家权威分析,试题“已知四边形ABCD中,AB=CD,E、F分别为AD、BC的中点,BA、CD的延长..”主要考查你对  三角形中位线定理  等考点的理解。关于这些考点的“档案”如下:

三角形中位线定理

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐