如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB·AF=CB·CD;(2)已知AB=15cm,BC=9cm,P是射线DE上的动点,设DP=xcm(x>0).当-八年级数学

题文

如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90 °,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.
(1)求证:AB·AF=CB·CD;
(2)已知AB=15cm,BC=9cm,P是射线DE上的动点,设DP=xcm(x>0).当x= _________ 时,△PBC的周长最小.
题型:解答题  难度:中档

答案

解:
(1)证明:∵∠DAB=90°
∴∠DAF+∠BAC=90°
∵DF⊥AC
∴∠DAF+∠ADF=90°
∴∠BAC=∠ADF又∠DFA=∠ACB
∴△DFA∽△ACB

∴AF·AB=BC·AD
∵AD=CD
∴AB·AF=CB·CD
(2)解:C△PBC=PB+PC+BC
∵AD=CD,DE⊥AC
∴DE是AC的垂直平分线
∴PC=PA根据两点之间线段最短,当点P在AB上时,PA+PB最小即点P与E重合时,△PBC周长最小.
∵∠ACB=90 °


∵AF·AB=CB·AD即6x15=9·AD
∴AD=10
∵FE是△ABC中位线


∴x=12.5时,△PBC周长最小.

据专家权威分析,试题“如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足..”主要考查你对  三角形中位线定理,三角形的中线,角平分线,高线,垂直平分线,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

三角形中位线定理三角形的中线,角平分线,高线,垂直平分线相似三角形的性质

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

考点名称:三角形的中线,角平分线,高线,垂直平分线

  • 三角形的中线:
    在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。由于三角形有三条边,所以一个三角形有三条中线。且三条中线交于一点。这点称为三角形的重心。
    每条三角形中线分得的两个三角形面积相等。
    角平分线:
    三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
    三角形的角平分线不是角的平分线,是线段。角的平分线是射线。
    高线:
    从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
    线段的垂直平分线:
    经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

    <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明
    巧计方法:点到线段两端距离相等。

  • 三角形中线性质定理:
    1
    、三角形的三条中线都在三角形内。<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />

    2、三角形的三条中线长:

    ma=(1/2)2b2+2c2 -a2

    mb=(1/2)2c2 +2a2 -b

    mc=(1/2)2a2 +2b2 -c

    (ma,mb,mc分别为角A,B,C所对的中线长)

    3、三角形的三条中线交于一点,该点叫做三角形的重心。

    4、直角三角形斜边上的中线等于斜边的一半。

    5.三角形中线组成的三角形面积等于这个三角形面积的3/4.

    定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

     

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐