如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,则四边形EFGH是平行四边形吗?为什么?-八年级数学
题文
如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,则四边形EFGH是平行四边形吗?为什么? |
答案
解:EFGH是平行四边形. 理由:如图,连接AC ∵EF是中位线 ∴EF=AC且EF∥AC 同理,GH=AC且GH∥AC ∴EF∥GH且EF=GH ∴四边形EFGH为平行四边形 |
据专家权威分析,试题“如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中..”主要考查你对 三角形中位线定理,平行四边形的判定 等考点的理解。关于这些考点的“档案”如下:
三角形中位线定理平行四边形的判定
考点名称:三角形中位线定理
- 三角形中位线定义:
连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
三角形中位线定理:
三角形的中位线平行于第三边,并且等于它的一半。
如图已知△ABC中,D,E分别是AB,AC两边中点。
则DE平行于BC且等于BC/2 - 三角形中位线逆定理:
逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 - 区分三角形的中位线和中线:
三角形的中位线是连结三角形两边中点的线段;
三角形的中线是连结一个顶点和它的对边中点的线段。
考点名称:平行四边形的判定
- 平行四边形的判定:
(1)定义:两组对边分别平行的四边形是平行四边形;
(2)定理1:两组对角分别相等的四边形是平行四边形;
(3)定理2:两组对边分别相等的四边形是平行四边形;
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形。
平行四边形的面积:S=底×高。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图所示,在△ABC中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.试说明:(1)DE∥BC;(2)DE=(BC﹣AC).-八年级数学
下一篇:如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF交于点M,连接CF,DE交于点N,求证:MN∥AD且MN=AD.-八年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |