已知:在△ABC中,AB=10.(1)如图(1)所示,若点D,E分别是AC,CB的中点,则DE的长为_________;(2)如图(2)所示,若点A1,A2把AC三等分,B1,B2把BC三等分,则A1B1+A2B2=_______-八年级数学

题文

已知:在△ABC中,AB=10.
(1)如图(1)所示,若点D,E分别是AC,CB的中点,则DE的长为 _________
(2)如图(2)所示,若点A1,A2把AC三等分,B1,B2把BC三等分,则A1B1+A2B2= _________
(3)如图(3)所示,若点A1,A2,…A10把AC边十一等分,B1,B2,…,B10把BC边十一等分,分别交BC边于点B1,B2,…,B10.根据你发现的规律,写出A1B1+A2B2+…+A10B10的结果为 _________
题型:解答题  难度:中档

答案

解:(1)DE= AB=5.故DE=5.
(2)设A1B1=x,则A2B2=2x.
∵A1,A2是AC的三等分点, B1,B2是BC的三等分点,
故由梯形中位线定理,有x+10=4x,
解得x= .这时A1B1+A2B2=10.
故A1B1+A2B2=10.
(3)同理可求出A1B1+A2B2+A3B3=15. A1B1+A2B2+A3B3+A4B4=20,…
从而A1B1+A2B2+…+A10B10=50.
故A1B1+A2B2+…+A10B10=50.

据专家权威分析,试题“已知:在△ABC中,AB=10.(1)如图(1)所示,若点D,E分别是AC,CB的中..”主要考查你对  三角形中位线定理,平行线分线段成比例  等考点的理解。关于这些考点的“档案”如下:

三角形中位线定理平行线分线段成比例

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

考点名称:平行线分线段成比例

  • 平行线分线段成比例定理:
    三条平行线截两条直线,所得对应线段成比例。
    推广:过一点的一线束被平行线截得的对应线段成比例。
    定理推论:
    ①平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例。
    ②平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。

  • 证明思路:
    该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的知识,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它(用相似三角形可以证明它,在这里要用到平移和设三条平行线与直线1交于A、B、C三点,与直线2交于D、E、F三点

    法1:过A作平行线的垂线交另两条平行线于M、N,过D作平行线的垂线交另两条平行线于P、Q,则四边形AMPD、ANQD均为矩形。

    AM=DP,AN=DQ
    AB=AM/cosA,AC=AN/cosA,∴AB/AC=AM/AN
    DE=DP/cosD,DF=DQ/cosD,∴DE/DF=DP/DQ
    又∵AM=DP,AN=DQ,∴AB/AC=DE/DF
    根据比例的性质:
    AB/(AC-AB)=DE/(DF-DE)
    ∴AB/BC=DE/EF

    法2:过A点作AN∥DF交BE于M点,交CF于N点,则AM=DE,MN=EF.

    ∵ BE∥CF
    ∴△ABM∽△ACN.
    ∴AB/AC=AM/AN
    ∴AB/(AC-AB)=AM/(AN-AM)
    ∴AB/BC=DE/EF

    法3:连结AE、BD、BF、CE

    根据平行线的性质可得S△ABE=S△DBE, S△BCE=S△BEF
    ∴S△ABE/S△CBE=S△DBE/S△BFE
    根据不同底等高三角形面积比等于底的比可得:
    AB/BC=DE/EF
    由更比性质、等比性质得:
    AB/DE=BC/EF=(AB+BC)/(DE+EF)=AC/DF

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐