如图,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(点E不与A、D重合),G、H、F分别是BE、CE和BC的中点.(1)猜想四边形EGFH的形状,并说明理由.(2)当点E运动到什么位置时-数学

题文

如图,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(点E不与A、D重合),G、H、F分别是B

E、CE和BC的中点.
(1)猜想四边形EGFH的形状,并说明理由.
(2)当点E运动到什么位置时,四边形EGFH是菱形?并说明理由.
(3)若四边形EGFH是正方形,请直接写出线段EF与线段BC满足的关系.(无需证明)
题型:解答题  难度:中档

答案

(1)四边形EGFH是平行四边形.理由如下:
∵F、G分别是BC、BE的中点,
∴FG∥CE且FG=
1
2
CE,
∵H是CE的中点,
∴EH=
1
2
CE,
∴FG∥EH且FG=EH,
∴四边形EGFH是平行四边形;

(2)点E运动到AD的中点时,四边形EGFH是菱形.理由如下:
当四边形EGFH是菱形时,EG=EH,
又∵G、H分别是BE、CE的中点,
∴BE=CE,
根据等腰梯形的对称性,AE=DE;

(3)当四边形EGFH是正方形时,EF⊥GH,且EF=GH,
∵G、H分别是BE、CE的中点,
∴GH∥BC且GH=
1
2
BC,
∴EF⊥BC且EF=
1
2
BC.

据专家权威分析,试题“如图,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(点E不与..”主要考查你对  三角形中位线定理,平行四边形的判定,菱形,菱形的性质,菱形的判定,梯形,梯形的中位线,正方形,正方形的性质,正方形的判定  等考点的理解。关于这些考点的“档案”如下:

三角形中位线定理平行四边形的判定菱形,菱形的性质,菱形的判定梯形,梯形的中位线正方形,正方形的性质,正方形的判定

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

考点名称:平行四边形的判定

  • 平行四边形的判定:
    (1)定义:两组对边分别平行的四边形是平行四边形;
    (2)定理1:两组对角分别相等的四边形是平行四边形;
    (3)定理2:两组对边分别相等的四边形是平行四边形;
    (4)定理3:对角线互相平分的四边形是平行四边形
    (5)定理4:一组对边平行且相等的四边形是平行四边形。
    平行四边形的面积:S=底×高。

考点名称:菱形,菱形的性质,菱形的判定

  • 菱形的定义:
    在一个平面内,有一组邻边相等的平行四边形是菱形。

  • 菱形的性质:
    ①菱形具有平行四边形的一切性质;
    ②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
    ③菱形的四条边都相等;
    ④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);
    ⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。

  • 菱形的判定:
    在同一平面内,
    (1)定义:有一组邻边相等的平行四边形是菱形
    (2)定理1:四边都相等的四边形是菱形
    (3)定理2:对角线互相垂直的平行四边形是菱形
    菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
    菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。

考点名称:梯形,梯形的中位线

  • 梯形的定义:
    一组对边平行,另一组对边不平行的四边形叫做梯形。
    梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底,梯形中不平行的两边叫做梯形的腰,梯形的两底的距离叫做梯形的高。
    梯形的中位线:
    连结梯形两腰的中点的线段。 

  • 梯形性质:
    ①梯形的上下两底平行;
    ②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
    ③等腰梯形对角线相等。

    梯形判定:
    1.一组对边平行,另一组对边不平行的四边形是梯形。
    2.一组对边平行且不相等的四边形是梯形。

    梯形中位线定理:
    梯形中位线平行于两底,并且等于两底和的一半。
    梯形中位线×高=(上底+下底)×高=梯形面积
    梯形中位线到上下底的距离相等
    中位线长度=(上底+下底)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐