如图,D,E,F分别是△ABC的三边BC,CA,AB的中点.求证:△DEF∽△ABC.-数学
题文
如图,D,E,F分别是△ABC的三边BC,CA,AB的中点.求证:△DEF∽△ABC. |
题文
如图,D,E,F分别是△ABC的三边BC,CA,AB的中点.求证:△DEF∽△ABC. |
题型:解答题 难度:中档
答案
∵D,E,F分别是△ABC的三边BC,CA,AB的中点, ∴EF、FD、DE为△ABC的中位线, ∴EF∥BC,FD∥AC,DE∥AB, ∴
即
∴△DEF∽△ABC. |
据专家权威分析,试题“如图,D,E,F分别是△ABC的三边BC,CA,AB的中点.求证:△DEF∽△ABC..”主要考查你对 三角形中位线定理,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
三角形中位线定理相似三角形的性质
考点名称:三角形中位线定理
考点名称:相似三角形的性质
相似三角形性质定理:
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
(8)c/d=a/b 等同于ad=bc.
(9)不必是在同一平面内的三角形里
①相似三角形对应角相等,对应边成比例.
②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
③相似三角形周长的比等于相似比
定理推论:
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |