如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.(2)若cos∠C=45,DF=3,求⊙O的半径.-数学
题文
如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F. (1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC. (2)若cos∠C=
|
题文
如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F. (1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC. (2)若cos∠C=
|
题型:解答题 难度:中档
答案
(1)证明: (方法一)连接AC. ∵AB是⊙O的直径,且AB⊥CD于E, 由垂径定理得,点E是CD的中点; 又∵M是AD的中点, ∴ME是△DAC的中位线, ∴MN∥AC. ∵AB是⊙O的直径,∴∠ACB=90°. ∴∠MNB=90°,即MN⊥BC; (方法二)∵AB⊥CD,∴∠AED=∠BEC=90°. M是AD的中点, ∴ME=AM,即有∠MEA=∠A. ∵∠MEA=∠BEN,∠C=∠A, ∴∠C=∠BEN. 又∵∠C+∠CBE=90°, ∴∠CBE+∠BEN=90°, ∴∠BNE=90°,即MN⊥BC; (方法三)∵AB⊥CD,∴∠AED=90°. 由于M是AD的中点, ∴ME=MD,即有∠MED=∠EDM. 又∵∠CBE与∠EDA同对
∵∠MED=∠NEC, ∴∠NEC=∠CBE. ∵∠C+∠CBE=90°, ∴∠NEC+∠C=90°, 即有∠CNE=90°,即MN⊥BC. (2)连接BD. ∵∠BCD与∠BAF同对
∴cos∠A=cos∠C=
∵BF是⊙O的切线,∴∠ABF=90°. 在Rt△ABF中,cos∠A=
设AB=4x,则AF=5x,由勾股定理得:BF=3x. ∵AB是⊙O的直径,∴BD⊥AD, ∴△ABF∽△BDF, ∴
即
x=
∴直径AB=4x=4×
则⊙O的半径为
|
据专家权威分析,试题“如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于..”主要考查你对 三角形中位线定理,勾股定理,垂直于直径的弦,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离),锐角三角函数的定义 等考点的理解。关于这些考点的“档案”如下:
三角形中位线定理勾股定理垂直于直径的弦直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)锐角三角函数的定义
考点名称:三角形中位线定理
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |