如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.(2)若cos∠C=45,DF=3,求⊙O的半径.-数学

题文

如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.
(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.
(2)若cos∠C=
4
5
,DF=3,求⊙O的半径.

题型:解答题  难度:中档

答案



(1)证明:
(方法一)连接AC.
∵AB是⊙O的直径,且AB⊥CD于E,
由垂径定理得,点E是CD的中点;
又∵M是AD的中点,
∴ME是△DAC的中位线,
∴MN∥AC.
∵AB是⊙O的直径,∴∠ACB=90°.
∴∠MNB=90°,即MN⊥BC;
(方法二)∵AB⊥CD,∴∠AED=∠BEC=90°.
M是AD的中点,
∴ME=AM,即有∠MEA=∠A.
∵∠MEA=∠BEN,∠C=∠A,
∴∠C=∠BEN.
又∵∠C+∠CBE=90°,
∴∠CBE+∠BEN=90°,
∴∠BNE=90°,即MN⊥BC;
(方法三)∵AB⊥CD,∴∠AED=90°.
由于M是AD的中点,
∴ME=MD,即有∠MED=∠EDM.
又∵∠CBE与∠EDA同对




AC
,∴∠CBE=∠EDA.
∵∠MED=∠NEC,
∴∠NEC=∠CBE.
∵∠C+∠CBE=90°,
∴∠NEC+∠C=90°,
即有∠CNE=90°,即MN⊥BC.

(2)连接BD.
∵∠BCD与∠BAF同对




BD
,∴∠C=∠A,
∴cos∠A=cos∠C=
4
5



∵BF是⊙O的切线,∴∠ABF=90°.
在Rt△ABF中,cos∠A=
AB
AF
=
4
5

设AB=4x,则AF=5x,由勾股定理得:BF=3x.
∵AB是⊙O的直径,∴BD⊥AD,
∴△ABF∽△BDF,
BF
AF
=
DF
BF

3x
5x
=
3
3x

x=
5
3

∴直径AB=4x=4×
5
3
=
20
3

则⊙O的半径为
10
3

据专家权威分析,试题“如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于..”主要考查你对  三角形中位线定理,勾股定理,垂直于直径的弦,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离),锐角三角函数的定义  等考点的理解。关于这些考点的“档案”如下:

三角形中位线定理勾股定理垂直于直径的弦直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)锐角三角函数的定义

考点名称:三角形中位线定理

  • 三角形中位线定义:
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐